Exploiting genomic surveillance to map the spatio-temporal dispersal of SARS-CoV-2 spike mutations in Belgium across 2020

  • 1.

    Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Kafetzopoulou, L. E. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363, 74–77 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Bedford, J. et al. A new twenty-first century science for effective epidemic response. Nature 575, 130–136 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. MedRxiv doi.org/10.1101/2020.12.21.20248640 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Voloch, C. M. et al. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. MedRxiv doi.org/10.1101/2020.12.23.20248598 (2020).

    Article 

    Google Scholar
     

  • 6.

    Hardy, O. J. et al. A world apart: Levels and factors of excess mortality due to COVID-19 in care homes: The case of Wallonia Belgium. MedRxiv doi.org/10.1101/2020.08.29.20183210 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Artesi, M. et al. A recurrent mutation at position 26340 of SARS-CoV-2 is associated with failure of the E gene quantitative reverse transcription-PCR utilized in a commercial dual-target diagnostic assay. J. Clin. Microbiol. 58, 10 (2020).

    Article 

    Google Scholar
     

  • 8.

    Dellicour, S. et al. A phylodynamic workflow to rapidly gain insights into the dispersal history and dynamics of SARS-CoV-2 lineages. Mol. Biol. Evol. doi.org/10.1093/molbev/msaa284 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Hodcroft, E. B. et al. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. MedRxiv doi.org/10.1101/2020.10.25.20219063 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Hodcroft, E. B. et al. Want to track pandemic variants faster? Fix the bioinformatics bottleneck. Nature 591, 30–33 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Freed, N. E., Vlková, M., Faisal, M. B. & Silander, O. K. Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biol. Methods Protoc. 5, 027 (2020).

    Article 

    Google Scholar
     

  • 12.

    Hadfield, J. et al. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math. Life Sci. 17, 57–86 (1986).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 16.

    Yang, Z. A space-time process model for the evolution of DNA sequences. Genetics 139, 993–1005 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 4, 042 (2018).

    Article 

    Google Scholar
     

  • 18.

    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 19.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).

    Article 

    Google Scholar
     

  • 20.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: Studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Dellicour, S., Rose, R. & Pybus, O. G. Explaining the geographic spread of emerging epidemics: A framework for comparing viral phylogenies and environmental landscape data. BMC Bioinform. 17, 1–12 (2016).

    Article 

    Google Scholar
     

  • 24.

    Singh, A., Steinkellner, G., Köchl, K., Gruber, K. & Gruber, C. Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2. Res. Square doi.org/10.21203/rs.3.rs-106969/v2 (2020).

    Article 

    Google Scholar
     

  • 25.

    Rahman, M. S. et al. Comprehensive annotations of the mutational spectra of SARS-CoV-2 spike protein: A fast and accurate pipeline. Transbound. Emerg. Dis. doi.org/10.1111/tbed.13834 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64-75.e11 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Turakhia, Y. et al. Ultrafast sample placement on existing trees (UShER) empowers real-time phylogenetics for the SARS-CoV-2 pandemic. BioRxiv doi.org/10.1101/2020.09.26.314971 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Gill, M. S., Lemey, P., Suchard, M. A., Rambaut, A. & Baele, G. Online Bayesian phylodynamic inference in BEAST with application to epidemic reconstruction. Mol. Biol. Evol. 37, 1832–1842 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Lemey, P. et al. Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nat. Commun. 11, 5110 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Kalkauskas, A. et al. Sampling bias and model choice in continuous phylogeography: Getting lost on a random walk. PLoS Comput. Biol. 17, e1008561 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    van Dorp, L. et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat. Commun. 11, 5986 (2020).

    Article 

    Google Scholar
     

  • Read more here: Source link