Fast and accurate bootstrap confidence limits on genome-scale phylogenies using little bootstraps

  • 1.

    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article 

    Google Scholar
     

  • 2.

    Kumar, S. & Filipski, A. Multiple sequence alignment: in pursuit of homologous DNA positions. Genome Res. 17, 127–135 (2007).

    Article 

    Google Scholar
     

  • 3.

    Kumar, S., Filipski, A. J., Battistuzzi, F. U., Kosakovsky Pond, S. L. & Tamura, K. Statistics and truth in phylogenomics. Mol. Biol. Evol. 29, 457–472 (2012).

    Article 

    Google Scholar
     

  • 4.

    Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article 

    Google Scholar
     

  • 5.

    Johnson, K. P. et al. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl Acad. Sci. USA 115, 12775–12780 (2018).

    Article 

    Google Scholar
     

  • 6.

    Ran, J. H., Shen, T. T., Wu, H., Gong, X. & Wang, X. Q. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol. Phylogenet. Evol. 129, 106–116 (2018).

    Article 

    Google Scholar
     

  • 7.

    Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 69, 38–60 (2020).

    Article 

    Google Scholar
     

  • 8.

    Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M. J. & Bond, J. E. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ 7, e6864 (2019).

    Article 

    Google Scholar
     

  • 9.

    Kuntner, M. et al. Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Syst. Biol. 68, 555–572 (2019).

    Article 

    Google Scholar
     

  • 10.

    Pessoa-Filho, M., Martins, A. M. & Ferreira, M. E. Molecular dating of phylogenetic divergence between Urochloa species based on complete chloroplast genomes. BMC Genomics 18, 516 (2017).

    Article 

    Google Scholar
     

  • 11.

    Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018 (2017).

    Article 

    Google Scholar
     

  • 12.

    Peters, R. S. et al. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence and evolutionary success. Mol. Phylogenet. Evol. 120, 286–296 (2018).

    Article 

    Google Scholar
     

  • 13.

    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).

    Article 

    Google Scholar
     

  • 14.

    Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in Eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA 109, 14942–14947 (2012).

    Article 

    Google Scholar
     

  • 15.

    Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771 (2008).

    Article 

    Google Scholar
     

  • 16.

    Minh, B. Q., Nguyen, M. A. T. & Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Article 

    Google Scholar
     

  • 17.

    Kleiner, A., Talwalkar, A., Sarkar, P. & Jordan, M. I. A scalable bootstrap for massive data. J. R. Stat. Soc. B Stat. Methodol. 76, 795–816 (2014).

    MathSciNet 
    Article 

    Google Scholar
     

  • 18.

    Seo, T.-K. Calculating bootstrap probabilities of phylogeny using multilocus sequence data. Mol. Biol. Evol. 25, 960–971 (2008).

    Article 

    Google Scholar
     

  • 19.

    Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatakis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337–354 (2010).

    MathSciNet 
    Article 

    Google Scholar
     

  • 20.

    Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Article 

    Google Scholar
     

  • 21.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 

    Google Scholar
     

  • 22.

    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).

    Article 

    Google Scholar
     

  • 23.

    Rosenberg, M. S. & Kumar, S. Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. Mol. Biol. Evol. 20, 610–621 (2003).

    Article 

    Google Scholar
     

  • 24.

    Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl Acad. Sci. USA 109, 19333–19338 (2012).

    Article 

    Google Scholar
     

  • 25.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • 26.

    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: efficient manipulation of biological strings. R Package Version 2.46.0 (Bioconductor, 2017); doi.org/10.18129/B9.bioc.Biostrings

  • 27.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article 

    Google Scholar
     

  • 28.

    Sharma, S. & Kumar, S. Fast and accurate bootstrap confidence limits on genome-scale phylogenies using little bootstraps. figshare doi.org/10.6084/m9.figshare.14130494

  • 29.

    Sharma, S. & Kumar, S. Fast and accurate bootstrap confidence limits on genome-scale phylogenies using little bootstraps. CodeOcean doi.org/10.24433/CO.6432188.v1

  • 30.

    Efron, B. Estimating the error rate of a prediction rule: improvement on cross-validation. J. Am. Stat. Assoc. 78, 316–331 (1983).

    MathSciNet 
    Article 

    Google Scholar
     

  • Read more here: Source link