A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest

  • 1.

    Edmonds, R. L. & Eglitis, A. The role of the Douglas-fir beetle and wood borers in the decomposition of and nutrient release from Douglas-fir logs. Can. J. Res. 19, 853–859 (1989).

    Article 

    Google Scholar
     

  • 2.

    Hlásny, T. et al. Living with bark beetles: impacts, outlook and management options. In: From Science to Policy 8. European Forest Institute (2019).

  • 3.

    Raffa, K. F., Andersson, M. N. & Schlyter, F. Host selection by bark beetles: Playing the odds in a high‐stakes game. In: Adv. Insect Physiol. (eds Blomquist G., Tittinger C.), Vol 50, 1–74. Elsevier Ltd. (2016).

  • 4.

    Biedermann, P. H. W. et al. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol. Evol. 34, 914–924 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).

    Article 

    Google Scholar
     

  • 7.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag 259, 660–684 (2010).

    Article 

    Google Scholar
     

  • 8.

    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Ebner, G. Significantly more damaged wood in 2019. www.timber-online.net/log_wood/2020/02/significantly-more-damaged-wood-in-2019.html (2020).

  • 10.

    Schlyter, F., Birgersson, G., Byers, J. A., Löfqvist, J. & Bergström, G. Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. J. Chem. Ecol. 13, 701–716 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Andersson, M. N. et al. Peripheral modulation of pheromone response by inhibitory host compound in a beetle. J. Exp. Biol. 213, 3332–3339 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Schlyter, F., Birgersson, G. & Leufvén, A. Inhibition of attraction to aggregation pheromone by verbenone and ipsenol: Density regulation mechanisms in bark beetle Ips typographus. J. Chem. Ecol. 15, 2263–2277 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Zhang, Q.-H. & Schlyter, F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric. For. Entomol. 6, 1–19 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Andersson, M. N. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 198 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Yuvaraj, J. K. et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 19, 16 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Hou, X.-Q. et al. Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Mol. Biol. Evol. msab218, doi.org/10.1093/molbev/msab1218 (2021).

  • 17.

    Filipiak, M. & Weiner, J. Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiol. Entomol. 42, 73–84 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kirk, T. K. & Cowling, E. B. Biological decomposition of solid wood. In: The Chemistry of Solid Wood (ed Rowell R.) 455-487. ACS Publications. doi.org/10.1021/ba-1984-0207.ch012 (1984).

  • 19.

    Chakraborty, A. et al. Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): Identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 10, 18572 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Chakraborty, A. et al. Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11, 2134 (2020b).


    Google Scholar
     

  • 21.

    Davis, T. S. The ecology of yeasts in the bark beetle holobiont: A century of research revisited. Microb. Ecol. 69, 723–732 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Kirisits, T. Fungal associates of european bark beetles with special emphasis on the ophiostomatoid fungi. In: Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds et al.) 181-236. Springer Netherlands (2007).

  • 23.

    Christiansen, E. Ceratocystis polonica inoculated in Norway spruce: Blue‐staining in relation to inoculum density, resinosis and tree growth. Eur. J. Pathol. 15, 160–167 (1985).

    Article 

    Google Scholar
     

  • 24.

    Kandasamy, D., Gershenzon, J., Andersson, M. N. & Hammerbacher, A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 13, 1788–1800 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Zhao, T. et al. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 38, 71–79 (2019).

    Article 

    Google Scholar
     

  • 26.

    Keeling, C. I. et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 14, R27 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 27.

    Vega, F. E. et al. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Sci. Rep. 5, 12525 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Smith, S. G. Chromosome numbers of Coleoptera. II. Heredity 7, 31–48 (1953).

    Article 

    Google Scholar
     

  • 29.

    Wang, S., Lorenzen, M. D., Beeman, R. W. & Brown, S. J. Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol. 9, R61 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 30.

    Herndon, N. et al. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics 21, 47 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    McKenna, D. D. et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 17, 227 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 32.

    Eyun, S. I. et al. Molecular evolution of glycoside hydrolase genes in the western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE 9, (2014).

  • 33.

    McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24729–24737 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Berger, E., Zhang, D., Zverlov, V. V. & Schwarz, W. H. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol. Lett. 268, 194–201 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Chu, C.-C. et al. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts. Evol. Appl. 8, 692–704 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Pauchet, Y. & Heckel, D. G. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc. R. Soc. B: Biol. Sci. 280, 20131021 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 37.

    Fujita, K., Shimomura, K., Yamamoto, K.-I., Yamashita, T. & Suzuki, K. A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem. Biophys. Res. Commun. 345, 502–507 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Santamaría, M. E. et al. Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. J. Insect Physiol. 78, 69–77 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Schoville, S. D. et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci. Rep. 8, 1931 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Netherer, S. et al. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94, 591–614 (2021).

    Article 

    Google Scholar
     

  • 41.

    Schiebe, C. et al. Inducibility of chemical defences in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 170, 183–198 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Hedges, L. V. Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).

    Article 

    Google Scholar
     

  • 43.

    Everaerts, C., Grégoire, J.-C. & Merlin, J. The toxicity of Norway spruce monoterpenes to two bark beetle species and their associates. In: Mechanisms of Woody Plant Defenses Against Insects (eds Mattson W. J., Levieux J., Bernard-Dagan C.) 335-344. Springer (1988).

  • 44.

    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. N. Phytol. 167, 353–376 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Andersson, M. N. & Newcomb, R. D. Pest control compounds targeting insect chemoreceptors: another silent spring? Front. Ecol. Evol. 5, 5 (2017).

    Article 

    Google Scholar
     

  • 46.

    Anderbrant, O., Schlyter, F. & Birgersson, G. Intraspecific competition affecting parents and offspring in the bark beetle Ips typographus. Oikos 45, 89–98 (1985).

    Article 

    Google Scholar
     

  • 47.

    Schlyter, F. & Cederholm, I. Separation of the sexes of living spruce bark beetles, Ips typographus (L.), (Coleoptera: Scolytidae). J. Appl. Entomol. 92, 42–47 (1981).


    Google Scholar
     

  • 48.

    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Simão, F. A., Waterhouse, R. M., Loannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness withqaz single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 51.

    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 52.

    Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing.). R Foundation for Statistical Computing (2020).

  • 57.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Holt, C. & Yandell, M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform 12, 491 (2011).

    Article 

    Google Scholar
     

  • 61.

    Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Article 

    Google Scholar
     

  • 62.

    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Hall, M. R. et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 544, 231–234 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Albertin, C. B. et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524, 220–224 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Xu, L. et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47, W52–W58 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238–238 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 69.

    Han, M. V., Thomas, G. W., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 82, 591–605 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 71.

    Coe, R. Effect size calculator. Cambridge CEM (2000).

  • Read more here: Source link