Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis

  • 1.

    Hackstein JH, Stumm CK. Methane production in terrestrial arthropods. Proc Natl Acad Sci USA. 1994;91:5441–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Hackstein JHP, van Alen TA. Fecal methanogens and vertebrate evolution. Evolution. 1996;50:559–72.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Borrel G, McCann A, Deane J, Neto MC, Lynch DB, Brugère JF, et al. Genomics and metagenomics of trimethylamine-utilizing archaea in the human gut microbiome. ISME J. 2017;11:2059–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Raymann K, Moeller AH, Goodman AL, Ochman H. Unexplored archaeal diversity in the great ape gut microbiome. mSphere. 2017;2:e00026-17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA. 2007;104:10643–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère JF. Archaea and the human gut: new beginning of an old story. World J Gastroenterol. 2014;20:16062–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE. 2010;5:e8926.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 9.

    Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brunea A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of ‘Candidatus Methanoplasma termitum’. Appl Environ Microbiol. 2015;81:1338–52.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 10.

    Borrel G, Brugère JF, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-associated archaeome. Nat Rev Microbiol. 2020;18:622–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JH, Keltjens JT. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol. 2000;50:1989–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Jarvis GN, Strömpl C, Burgess DM, Skillman LC, Moore ER, Joblin KN. Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol. 2000;40:327–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Lambie SC, Kelly WJ, Leahy SC, Li D, Reilly K, McAllister TA, et al. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand Genomic Sci. 2015;10:57.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Brune, A. Methanogens in the digestive tract of termites. In: Hackstein JHP, editor. (Endo)symbiotic methanogenic archaea. Berlin: Springer; 2018. p. 81–101.

  • 15.

    Li Z, Wang X, Alberdi A, Deng J, Zhong Z, Si H, et al. Comparative microbiome analysis reveals the ecological relationships between rumen methanogens, acetogens, and their hosts. Front Microbiol. 2020;11:1311.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Sprenger WW, Hackstein JHP, Keltjens JT. The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects. Antonie van Leeuwenhoek. 2005;87:289–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Sprenger WW, Hackstein JHP, Keltjens JT. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol Ecol. 2007;60:266–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber C, et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol. 2019;4:603–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 2016;10:2478–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol. 2017;2:17081.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the novel archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Borrel G, O’Toole PW, Harris HM, Peyret P, Brugère JF, Gribaldo S. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol. 2013;5:1769–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Söllinger A, Urich T. Methylotrophic methanogens everywhere—physiology and ecology of novel players in global methane cycling. Biochem Soc Trans. 2019;47:1895–907.

    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.

  • 29.

    Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol. 2003;328:307–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11:431.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 38.

    Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Miele V, Penel S, Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics. 2011;12:116.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Csurös, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.

  • 42.

    Oren, A. The family methanosarcinaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: other major lineages of bacteria and the archaea. Berlin: Springer; 2014. p. 259–81.

  • 43.

    Ebbes M, Bleymüller WM, Cernescu M, Nölker R, Brutschy B, Niemann HH. Fold and function of the InlB B-repeat. J Biol Chem. 2011;286:15496–506.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Haft DH, Payne SH, Selengut JD. Archaeosortases and exosortases are widely distributed systems linking membrane transit with posttranslational modification. J Bacteriol. 2012;194:36–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Porter NT, Martens EC. The critical roles of polysaccharides in gut microbial ecology and physiology. Annu Rev Microbiol. 2017;71:349–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Albers SV, Meyer BH. The archaeal cell envelope. Nat Rev Microbiol. 2011;9:414–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Ashhurst DE, Costin NM. Insect mucosubstances. III. Some mucosubstances of the nervous systems of the wax-moth (Galleria mellonella) and the stick insect (Carausius morosus). Histochem J. 1971;3:379–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Morita, RY. Bacteria in oligotrophic environments. New York, NY: Chapman & Hall; 1997.

  • 49.

    Paula FS, Chin JP, Schnürer A, Müller B, Manesiotis P, Waters N, et al. The potential for polyphosphate metabolism in archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Sci Rep. 2019;9:17101.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Harris RM, Webb DC, Howitt SM, Cox GB. Characterization of PitA and PitB from Escherichia coli. J Bacteriol. 2001;183:5008–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 51.

    Poehlein A, Schneider D, Soh M, Daniel R, Seedorf H. Comparative genomic analysis of members of the genera methanosphaera and methanobrevibacter reveals distinct clades with specific potential metabolic functions. Archaea. 2018;2018:609847.

    Article 
    CAS 

    Google Scholar
     

  • 52.

    Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, et al. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics. 2014;15:679.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 53.

    Hwang S, Choe D, Yoo M, Cho S, Kim SC, Cho S, et al. Peptide transporter CstA imports pyruvate in Escherichia coli K-12. J Bacteriol. 2018;200:e00771-17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Rasmussen JJ, Vegge CS, Frøkiær H, Howlett RM, Krogfelt KA, Kelly DJ, et al. Campylobacter jejuni carbon starvation protein A (CstA) is involved in peptide utilization, motility and agglutination, and has a role in stimulation of dendritic cells. J Med Microbiol. 2013;62:1135–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Li Y, Leahy SC, Jeyanathan J, Henderson G, Cox F, Altermann E, et al. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand Genomic Sci. 2016;11:59.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Kelly WJ, Li D, Lambie SC, Jeyanathan J, Cox F, Li Y, et al. Complete genome sequence of methanogenic Archaeon ISO4-G1, a member of the Methanomassiliicoccales, isolated from a sheep rumen. Genome Announc. 2016;4:e00221-16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Maitra PK, Bhosale SB, Kshirsagar DC, Yeole TY, Shanbhag AN. Metabolite and enzyme profiles of glycogen metabolism in Methanococcoides methylutens. FEMS Microbiol Lett. 2001;198:23–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 58.

    Santiago-Martínez MG, Encalada R, Lira-Silva E, Pineda E, Gallardo-Pérez JC, Reyes-García MA, et al. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes. FEBS J. 2016;283:1979–99.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 59.

    Dobrijevic D, Abraham AL, Jamet A, Maguin E, van de Guchte M. Functional comparison of bacteria from the human gut and closely related non-gut bacteria reveals the importance of conjugation and a paucity of motility and chemotaxis functions in the gut environment. PLoS ONE. 2016;11:e0159030.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct. 2009;4:13.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 61.

    Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol. 2006;188:642–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 62.

    Adam PS, Borrel G, Gribaldo S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat Microbiol. 2019;4:2155–63.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 63.

    Schröder I, Thauer RK. Methylcobalamin:homocysteine methyltransferase from Methanobacterium thermoautotrophicum. Identification as the metE gene product. Eur J Biochem. 1999;263:789–96.

    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Krone UE, McFarlan SC, Hogenkamp HPC. Purification and partial characterization of a putative thymidylate synthase from Methanobacterium thermoautotrophicum. Eur J Biochem. 1994;220:789–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Muller V, Blaut M, Gottschalk G. Utilization of methanol plus hydrogen by Methanosarcina barkeri for methanogenesis and growth. Appl Environ Microbiol. 1986;52:269–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Kato N, Yurimoto H, Thauer RK. The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem. 2006;70:10–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta Bioenerg. 2014;1837:1130–47.

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Kurth JM, den Camp HJMO, Welte CU. Several ways one goal—methanogenesis from unconventional substrates. Appl Microbiol Biotechnol. 2020;104:6839–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 69.

    Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA. 2002;99:5632–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 70.

    Wagner T, Koch J, Ermler U, Shima S. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science. 2017;357:689–703.

    Article 
    CAS 

    Google Scholar
     

  • 71.

    Arshad A, Speth DR, de Graaf RM, Op den Camp HJ, Jetten MS, Welte CU. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front Microbiol. 2015;6:6.

    Article 

    Google Scholar
     

  • 72.

    Hedderich R, Whitman WB. Physiology and biochemistry of the methane-producing archaea. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes – prokaryotic biology and symbiotic associations. Berlin: Springer; 2013. p. 1050–79.

  • 73.

    Morgavi DP, Martin C, Jouany JP, Ranilla MJ. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br J Nutr. 2012;107:388–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 74.

    Maier RJ, Olczak A, Maier S, Soni S, Gunn J. Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect Immun. 2004;72:6294–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 75.

    Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012;9:504–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 76.

    Kalantar-Zadeh K, Berean KJ, Ha N, Chrimes AF, Xu K, Grando D, et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat Electron. 2018;1:79–87.

    Article 

    Google Scholar
     

  • 77.

    Conrad R, Phelps TJ, Zeikus JG. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol. 1985;50:595–601.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 78.

    Lovley DR, Goodwin S. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta. 1988;52:2993–3003.

    CAS 
    Article 

    Google Scholar
     

  • 79.

    Hackstein JHP. Genetic and evolutionary constraints for the symbiosis between animals and methanogenic bacteria. Environ Monit Assess. 1996;42:39–56.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 80.

    Ametaj BN, Zebeli Q, Saleem F, Psychogios N, Lewis MJ, Dunn SM, et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics. 2010;6:583–94.

    CAS 
    Article 

    Google Scholar
     

  • 81.

    Mausz MA, Chen Y. Microbiology and ecology of methylated amine metabolism in marine ecosystems. Curr Issues Mol Biol. 2019;33:133–48.

    PubMed 
    Article 

    Google Scholar
     

  • 82.

    King GM, Klug MJ, Lovley DR. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl Environ Microbiol. 1983;45:1848–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 83.

    Borrel G, Joblin K, Guedon A, Colombet J, Tardy V, Lehours AC, et al. Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol. 2012;62:1625–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 84.

    Krivushin KV, Shcherbakova VA, Petrovskaya LE, Rivkina EM. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol. 2010;60:455–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 85.

    Wang Y, Wegener G, Williams TA, Xie R, Hou J, Tian C, et al. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism. Sci Adv. 2021;7:eabj1453.

  • 86.

    Hervé V, Liu P, Dietrich C, Sillam-Dussès D, Stiblik P, Šobotník J, et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ. 2020;8:e8614.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 87.

    Lind AE, Lewis WH, Spang A, Guy L, Embley TM, Ettema T. Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME J. 2018;12:2655–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Read more here: Source link