Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae)

  • 1.

    Szathmáry E, Smith JM. The major evolutionary transitions. Nature 1995;374:227–32.

    PubMed 

    Google Scholar
     

  • 2.

    West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Moran NA. The coevolution of bacterial endosymbionts and phloem-feeding insects. Ann Mo Bot Gard. 2001;88:35–44.


    Google Scholar
     

  • 4.

    Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A. Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci USA. 2002;99:4454–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Tamames J, Gil R, Latorre A, Pereto J, Silva FJ, Moya A. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol. 2007;7:181.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013;153:1567–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Wilson ACC, Duncan RP. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci USA. 2015;112:10255–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 2001;412:433–6.


    Google Scholar
     

  • 10.

    McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christeller JT. Molecular and histological characterization of primary (Betaproteobacteria) and secondary (Gammaproteobacteria) endosymbionts of three mealybug species. Appl Environ Microbiol. 2012;78:1187–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Bennett GM, Moran NA. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol. 2013;5:1675–88.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Bressan A, Mulligan KL. Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae): Bacteriome-inhabiting symbionts in Oliarus filicicola. Environ Microbiol Rep. 2013;5:499–505.

    PubMed 

    Google Scholar
     

  • 14.

    Bennett GM, Mao M. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Environ Microbiol. 2018;20:4461–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, et al. Dynamic acquisition and loss of dual-obligate symbionts in the plant-sap-feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol. 2017;8:1037.


    Google Scholar
     

  • 16.

    Mao M, Yang X, Poff K, Bennett G. Comparative genomics of the dual-obligate symbionts from the treehopper, Entylia carinata (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Genome Biol Evol. 2017;9:1803–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 my of evolution. Genome Biol Evol. 2010;2:708–18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Hall AAG, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, et al. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol. 2016;18:2591–603.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson A-S, Wernegreen JJ, et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 2002;296:2376–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 2000;407:81–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol. 2005;71:8802–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol. 2010;76:7521–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Koga R, Moran NA. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 2014;8:1237–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Mao M, Bennett GM. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 2020;14:1384–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL. Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol. 2003;1:e21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Weglarz KM, Havill NP, Burke GR, von Dohlen CD. Partnering with a pest: genomes of hemlock woolly adelgid symbionts reveal atypical nutritional provisioning patterns in dual-obligate bacteria. Genome Biol Evol. 2018;10:1607–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Toenshoff ER, Penz T, Narzt T, Collingro A, Schmitz-Esser S, Pfeiffer S, et al. Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). ISME J 2012;6:384–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Toenshoff ER, Gruber D, Horn M. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environ Microbiol. 2012;14:1284–95.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Toenshoff ER, Szabó G, Gruber D, Horn M. The pine bark adelgid, Pineus strobi, contains two novel bacteriocyte-associated gammaproteobacterial symbionts. Appl Environ Microbiol. 2014;80:878–85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C, Hoover K. Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and introduced range. Environ Microbiol. 2013;15:2043–62.


    Google Scholar
     

  • 33.

    Havelka J, Danilov J, Rakauskas R. Relationships between aphid species of the family Adelgidae (Hemiptera Adelgoidea) and their endosymbiotic bacteria: a case study in Lithuania. Bull Insectology. 2021;74:1–10.


    Google Scholar
     

  • 34.

    Favret C, Havill NP, Miller GL, Sano M, Victor B. Catalog of the adelgids of the world (Hemiptera, Adelgidae). Zookeys 2015;534:35–54.


    Google Scholar
     

  • 35.

    Blackman RL, Eastop VF Aphids on the world’s trees: an identification and information guide. 1994. CAB International.

  • 36.

    Havill NP, Foottit RG. Biology and evolution of Adelgidae. Ann Rev Ento. 2007;52:325–49.

    CAS 

    Google Scholar
     

  • 37.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end read mergeR. Bioinformatics 2014;30:614–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Bio. 2012;19:455–77.

    CAS 

    Google Scholar
     

  • 40.

    Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6:1287.


    Google Scholar
     

  • 43.

    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Chu C, Li X, Wu Y. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genomics. 2019;20:426.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12:R30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20:1085–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, et al. The EcoCyc database. EcoSal Plus. 2018;8:10.1128.


    Google Scholar
     

  • 49.

    Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49–e49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47:W52–W58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Xu Y, Bi C, Wu G, Wei S, Dai X, Yin T, et al. VGSC: a web-based vector graph toolkit of genome synteny and collinearity. Biomed Res Int. 2016;2016:7823429.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–99.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Guy L. phyloSkeleton: taxon selection, data retrieval and marker identification for phylogenomics. Bioinformatics 2017;33:1230–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biology. 2011;9:1–17.


    Google Scholar
     

  • 63.

    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol. 2018;20:2142–59.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Burke GR, Normark BB, Favret C, Moran NA. Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol. 2009;75:5328–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Manzano‐Marín A, Szabó G, Simon J, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co‐obligate secondary endosymbionts within Lachninae aphids: co-obligate endosymbiont dynamics in the Lachninae. Environ Microbiol. 2017;19:393–408.

    PubMed 

    Google Scholar
     

  • 67.

    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    ggplot2. Create elegant data visualisations using the grammar of graphics. ggplot2.tidyverse.org/. Accessed Apr 2021.

  • 69.

    Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biol Evol. 2015;7:2871–84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Janda JM, Abbott SL. The genus Hafnia: from soup to nuts. Clin Microbiol Rev. 2006;19:12–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M Evolutionary recent dual obligatory symbiosis among adelgids indicates a transition between fungus and insect associated lifestyles. bioRxiv. 2020; e-pub ahead of print 16 October 2020; doi.org/10.1101/2020.10.16.342642.

  • 72.

    Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol. 2010;19:249–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol. 2014;31:857–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23:1473–96.

    PubMed 

    Google Scholar
     

  • 75.

    Manzano-Marı́n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.


    Google Scholar
     

  • 76.

    Lo W-S, Huang Y-Y, Kuo C-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 2016;40:855–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K, Hattori M, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 2006;16:149–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature 2001;409:1007–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215.

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Bennett GM, McCutcheon JP, MacDonald BR, Romanovicz D, Moran NA. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 2014;5:e01697–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Degnan PH, Ochman H, Moran NA. Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera. PLoS Genet. 2011;7:e1002252.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Van Leuven JT, Meister RC, Simon C, McCutcheon JP. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 2014;158:1270–80.

    PubMed 

    Google Scholar
     

  • 83.

    Gomez-Valero L. The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol. 2004;21:2172–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Manzano-Marı́n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. A freeloader? The highly eroded yet large genome of the Serratia symbiotica symbiont of Cinara strobi. Genome Biol Evol. 2018;10:2178–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol Evol. 2017;9:2893–910.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Havill NP, Foottit RG, von Dohlen CD. Evolution of host specialization in the Adelgidae (Insecta: Hemiptera) inferred from molecular phylogenetics. Mol Phylogenet. 2007;44:357–70.

    CAS 

    Google Scholar
     

  • 87.

    Manzano-Marı́n A, Latorre A. Snapshots of a shrinking partner: genome reduction in Serratia symbiotica. Sci Rep. 2016;6:32590.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Monnin D, Jackson R, Kiers ET, Bunker M, Ellers J, Henry LM. Parallel evolution in the integration of a co-obligate aphid symbiosis. Curr Biol. 2020;30:1949–57. e6

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA. 2016;113:e5416–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, et al. Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol. 2010;12:2060–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Burke GR, Moran NA. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol. 2011;3:195–208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, et al. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991;173:6321–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc B 1993;253:167–71.


    Google Scholar
     

  • 95.

    Kuechler SM, Gibbs G, Burckhardt D, Dettner K, Hartung V. Diversity of bacterial endosymbionts and bacteria-host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae). Environ Microbiol. 2013;15:2031–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol. 2000;66:2898–905.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol. 2004;70:3401–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Meseguer AS, Manzano-Marín A, Coeur d’Acier A, Clamens AL, Godefroid M, Jousselin E. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Mol Ecol. 2017;26:2363–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics. 2015;16:226.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Rosenblueth M, Sayavedra L, Sámano-Sánchez H, Roth A, Martínez-Romero E. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J Evol Biol. 2012;25:2357–68.

    PubMed 

    Google Scholar
     

  • 102.

    Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, Jankowska W, Michalik A. Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea). Arthropod Struct Dev. 2016;45:265–72.

    PubMed 

    Google Scholar
     

  • 103.

    Van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, et al. Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA. 2003;100:581–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Vogel KJ, Moran NA. Effect of host genotype on symbiont titer in the aphid-Buchnera symbiosis. Insects 2011;2:423–34.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Bennett GM, McCutcheon JP, McDonald BR, Moran NA. Lineage-specific patterns of genome deterioration in obligate symbionts of sharpshooter leafhoppers. Genome Biol Evol. 2015;8:296–301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Havill NP, Griffin BP, Andersen JC, Foottit RG, Justesen MJ, Caccone A, et al. Species delimitation and invasion history of the balsam woolly adelgid, Adelges (Dreyfusia) piceae (Hemiptera: Aphidoidea: Adelgidae), species complex. Syst Entomol. 2021;46:186–204.


    Google Scholar
     

  • Read more here: Source link