Structural basis for mismatch surveillance by CRISPR/Cas9


The widespread use of CRISPR/Cas9 as a programmable genome editing tool has been hindered by off-target DNA cleavage (Cong et al., 2013; Doudna, 2020; Fu et al., 2013; Jinek et al., 2013). While analysis of such off-target editing events have enabled the development of Cas9 variants with greater discrimination against mismatches (Chen et al., 2017; Kleinstiver et al., 2016; Slaymaker et al., 2016), the underlying molecular mechanisms by which Cas9 rejects or accepts mismatches are poorly understood (Kim et al., 2019; Liu et al., 2020; Slaymaker and Gaudelli, 2021). Here, we used kinetic analysis to guide cryo-EM structure determination of Cas9 at different stages of mismatch surveillance. We observe a distinct, previously undescribed linear conformation of the duplex formed between the guide RNA (gRNA) and DNA target strand (TS), that occurs in the presence of PAM-distal mismatches, preventing Cas9 activation. The canonical kinked gRNA:TS duplex is a prerequisite for Cas9 activation, acting as a structural scaffold to facilitate Cas9 conformational rearrangements necessary for DNA cleavage. We observe that highly tolerated PAM- distal mismatches achieve this kinked conformation through stabilization of a distorted duplex conformation via a flexible loop in the RuvC domain. Our results provide molecular insights into the underlying structural mechanisms that may facilitate off- target cleavage by Cas9 and provides a molecular blueprint for the design of next- generation high fidelity Cas9 variants that selectively reduce off-target DNA cleavage while retaining efficient cleavage of on-target DNA.

Competing Interest Statement

The authors are inventors on a submitted patent application based on this work. K.A.J. is the President of KinTek, Corp., which provided the chemical-quench flow instruments and the KinTek Explorer software used in this study.

Read more here: Source link