Presence of male mitochondria in somatic tissues and their functional importance at the whole animal level in the marine bivalve Arctica islandica

  • 1.

    Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    John, U. et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 5, 1–12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 3.

    Breton, S. & Stewart, D. T. Atypical mitochondrial inheritance patterns in eukaryotes. Genome 58, 423–431 (2015).

  • 4.

    Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270, S96–S99 (2003).

    CAS 

    Google Scholar
     

  • 5.

    Wolff, J. N., Ladoukakis, E. D., Enriquez, J. A. & Dowling, D. K. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130443–20130443 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 6.

    Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Correa, C. C., Aw, W. C., Melvin, R. G., Pichaud, N. & Ballard, J. W. O. Mitochondrial DNA variants influence mitochondrial bioenergetics in Drosophila melanogaster. Mitochondrion 12, 459–464 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Moreno-Loshuertos, R. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38, 1261–1268 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    White, D. J., Wolff, J. N., Pierson, M. & Gemmell, N. J. Revealing the hidden complexities of mtDNA inheritance. Mol. Ecol. 17, 4925–4942 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Greiner, S., Sobanski, J. & Bock, R. Why are most organelle genomes transmitted maternally? BioEssays 37, 80–94 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Ghiselli, F. et al. Natural heteroplasmy and mitochondrial inheritance in bivalve molluscs. Integr. Comp. Biol. 59, 1016–1032 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Luo, S. et al. Biparental inheritance of mitochondrial DNA in humans. Proc. Natl Acad. Sci. USA 115, 13039–13044 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Schwartz, M. & Vissing, J. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A. C. Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Breton, S. et al. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA. PLOS ONE 1–13 journals.plos.org/plosone/article?id=10.1371/journal.pone.0183529 (2017).

  • 16.

    Gusman, A., Lecomte, S., Stewart, D. T., Passamonti, M. & Breton, S. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA. PeerJ 4, e2760 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Zouros, E. Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol. Biol. 40, 1–31 (2013).

    Article 

    Google Scholar
     

  • 18.

    Breton, S., Beaupré, H. D., Stewart, D. T., Hoeh, W. R. & Blier, P. U. The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends Genet 23, 465–474 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Milani, L., Ghiselli, F., Guerra, D., Breton, S. & Passamonti, M. A comparative analysis of mitochondrial ORFans: New clues on their origin and role in species with Doubly Uniparental Inheritance of mitochondria. Genome Biol. Evol. 5, 1408–1434 (2013).

  • 20.

    Doucet-Beaupre, H. et al. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol. Biol. 10, 50 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 21.

    Capt, C. et al. Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Sci. Rep. 10, 1–13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 22.

    Breton, S. et al. Novel protein genes in animal mtDNA:a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? Mol. Biol. Evol. 28, 1645–1659 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Lubośny, M., Przyłucka, A., Śmietanka, B. & Burzyński, A. Semimytilus algosus: first known hermaphroditic mussel with doubly uniparental inheritance of mitochondrial DNA. Sci. Rep. 10, 1–12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Mioduchowska, M., Kaczmarczyk, A., Zając, K., Zając, T. & Sell, J. Gender-Associated Mitochondrial DNA Heteroplasmy in Somatic Tissues of the Endangered Freshwater Mussel Unio crassus (Bivalvia: Unionidae): Implications for Sex Identification and Phylogeographical Studies. J. Exp. Zool. Part A Ecol. Genet. Physiol. 325, 610–625 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Obata, M., Sano, N. & Komaru, A. Different transcriptional ratios of male and female transmitted mitochondrial DNA and tissue-specific expression patterns in the blue mussel, Mytilus galloprovincialis. Dev. Growth Differ. 53, 878–886 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Milani, L., Ghiselli, F., Iannello, M. & Passamonti, M. Evidence for somatic transcription of male-transmitted mitochondrial genome in the DUI species Ruditapes philippinarum (Bivalvia: Veneridae). Curr. Genet. 60, 163–173 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Ghiselli, F., Milani, L. & Passamonti, M. Strict sex-specific mtDNA segregation in the germ line of the dui species venerupis philippinarum (Bivalvia: Veneridae). Mol. Biol. Evol. 28, 949–961 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Obata, M., Kamiya, C., Kawamura, K. & Komaru, A. Sperm mitochondrial DNA transmission to both male and female offspring in the blue mussel Mytilus galloprovincialis. Dev. Growth Differ. 48, 253–261 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Breton, S., Stewart, D. T. & Blier, P. U. Role-reversal of gender-associated mitochondrial dna affects mitochondrial function in mytilus edulis (bivalvia: mytilidae). J. Exp. Zool. Part B Mol. Dev. Evol. 312, 108–117 (2009).

    Article 
    CAS 

    Google Scholar
     

  • 30.

    Hoeh, W. R., Stewart, D. T., Saavedra, C., Sutherland, B. W. & Zouros, E. Phylogenetic evidence for role-reversals of gender-associated mitochondrial DNA in Mytilus (Bivalvia: Mytilidae). Mol. Biol. Evol. 14, 959–967 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 31.

    Stewart, D. T., Breton, S., Blier, P. U. & Hoeh, W. R. Evolutionary Biology. 163–173 doi.org/10.1007/978-3-642-00952-5 (2009).

  • 32.

    Dégletagne, C., Abele, D. & Held, C. A distinct mitochondrial genome with DUI-like inheritance in the Ocean Quahog Arctica islandica. Mol. Biol. Evol. 33, 375–383 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 33.

    Glöckner, G., Heinze, I., Platzer, M., Held, C. & Abele, D. The mitochondrial genome of Arctica islandica; phylogeny and variation. PLoS One 8, 1–9 (2013).0

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Breton, S., Burger, G., Stewart, D. T. & Blier, P. U. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 172, 1107–1119 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Passamonti, M., Boore, J. L. & Scali, V. Molecular evolution and recombination in gender-associated mitochondrial DNAs of the manila clam Tapes philippinarum. Genetics 164, 603–611 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Bettinazzi, S., Plazzi, F. & Passamonti, M. The complete female- and male-transmitted mitochondrial genome of Meretrix lamarckii. PLoS One 11, 1–29 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 37.

    Dahlgren, T. G., Weinberg, J. R. & Halanych, K. M. Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar. Biol. 137, 487–495 (2000).

    Article 

    Google Scholar
     

  • 38.

    Bettinazzi, S. et al. Linking paternally inherited mtDNA variants and sperm performance. Philos. Trans. R. Soc. B Biol. Sci. royalsocietypublishing.org/doi/10.1098/rstb.2019.0177 (2020).

  • 39.

    Bettinazzi, S., Rodríguez, E., Milani, L., Blier, P. U. & Breton, S. Metabolic remodelling associated with mtDNA: Insights into the adaptive value of doubly uniparental inheritance of mitochondria. Proc. R. Soc. B Biol. Sci. 286, 20182708 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Strahl, J. et al. Physiological responses to self-induced burrowing and metabolic rate depression in the ocean quahog Arctica islandica. J. Exp. Biol. 214, 4223–4233 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Abele, D., Kruppe, M., Philipp, E. E. R. & Brey, T. Mantle cavity water oxygen partial pressure (Po2) in marine molluscs aligns with lifestyle. Can. J. Fish. Aquat. Sci. 67, 977–986 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Moss, D. K., Ivany, L. C., Silver, R. B., Schue, J. & Artruc, E. G. High-latitude settings promote extreme longevity in fossil marine bivalves. Paleobiology 43, 365–382 (2017).

    Article 

    Google Scholar
     

  • 43.

    Begum, S. et al. A metabolic model for the ocean quahog Arctica islandica – effects of animal mass and age, temperature, salinity, and geography on respiration rate. J. Shellfish Res. 28, 533–539 (2009).

    Article 

    Google Scholar
     

  • 44.

    Basova, L. et al. Lipofuscin accumulation in tissues of Arctica islandica indicates faster ageing in populations from brackish environments. Mar. Biol. 164, 72 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 45.

    Abele, D. & Philipp, E. Environmental control and control of the environment: the basis of longevity in bivalves. Gerontology 59, 261–266 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A. & Reynolds, D. J. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 141–151 (2013).

    Article 

    Google Scholar
     

  • 47.

    Suomalainen, A. & Battersby, B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 19, 77–92 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 48.

    Morrow, E. H., Reinhardt, K., Wolff, J. N. & Dowling, D. K. Risks inherent to mitochondrial replacement. EMBO Rep. 16, 541–545 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Hill, G. E. Mitonuclear ecology. Mol. Biol. Evol. 32, 1917–1927 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Lane, N. Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations. BioEssays 33, 860–869 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Gruber, H. et al. Telomere-independent ageing in the longest-lived non-colonial animal, arctica islandica. Exp. Gerontol. 51, 38–45 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Andersen, C., Jensen, J. & Orntoft, T. Normalization of real ­ time quantitative reverse transcription ­ PCR data: a model ­ based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Freese, N. H., Norris, D. C. & Loraine, A. E. Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32, 2089–2095 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth 9, 772 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Rambaut, A. & Drummond, A. J. FigTree. Version 1.4. 0. Available at tree.bio.ed.ac.uk/software/figtree/ (2012).

  • 60.

    Ewing, G. B. Haplotype viewer. Cent. Integr. Bioinforma. Vienna, Vienna. www.cibiv.at/~greg/haploviewer. Accessed 12, (2012).

  • 61.

    Loytynoja, A. & Goldman, N. From The Cover: An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl Acad. Sci. 102, 10557–10562 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 62.

    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 63.

    Team, R. C. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2014 www.r-project.org/ (2015).

  • 64.

    Dolédec, S. & Chessel, D. Rythmes saisonniers et composantes stationnelles en milieu aquatique. II: Prise en compte et élimination d’effets dans un Tableau faunistique. Oecologia Gen. 10, 207–232 (1989).


    Google Scholar
     

  • 65.

    Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package – I: one-table methods. R. N. 4, 5–10 (2004).


    Google Scholar
     

  • Read more here: Source link