Open Source Biology & Genetics Interest Group

Open source tools and preprints for in vitro biology, genetics, bioinformatics, crispr, and other biotech applications.

LAMMPS molecular dynamics simulation of methane decomposition on nickel thin films at high temperatures

doi.org/10.1016/j.susc.2021.121904Get rights and content

Highlights

The activation energy of methane decomposition by nickel thin films was calculated using LAMMPS and ReaxFF.

A Ni thin film with (111) surfaces was simulated to investigate the deposition of carbon and hydrogen atoms on the surfaces.

The catalytic activity of the Ni (111) thin film decreased from the point of critical supersaturation of carbon in the Ni thin film.

Abstract

The activation energy of methane decomposition by nickel was calculated using models of nickel thin films, a large-scale atomic/molecular massively parallel simulator (LAMMPS) and a ReaxFF potential. The rate constants of the first-order chemical reaction of methane decomposition were obtained by analyzing the number of undecomposed methane molecules in individual movie frames. The obtained activation energies of methane decomposition on the Ni (111) surfaces showed values close to those reported in the literature. The structural change of a Ni thin film with (111) surfaces was simulated to investigate how carbon and hydrogen atoms are deposited on the Ni thin film upon the decomposition of methane molecules at a high temperature. The catalytic activity of the (111) Ni thin film was found to decrease from the time point of critical supersaturation of carbon in the Ni thin film.

Keywords

Nickel

Methane

Hydrogen

LAMMPS

ReaxFF

View full text

© 2021 Elsevier B.V. All rights reserved.

Read more here: Source link