Centromere size scales with genome size across Eukaryotes

  • 1.

    Talbert, P. B. & Henikoff, S. What makes a centromere?. Exp. Cell Res. 389, 111895 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Murillo-Pineda, M. & Jansen, L. E. T. Genetics, epigenetics and back again: Lessons learned from neocentromeres. Exp. Cell Res. 389, 111909 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Drinnenberg, I. A., deYoung, D., Henikoff, S. & Malik, H. S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 3, 3676 (2014).

    Article 

    Google Scholar
     

  • 4.

    Krátká, M., Šmerda, J., Lojdová, K., Bureš, P. & Zedek, F. Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. Front. Plant Sci. 12, 642661 (2021).

    Article 

    Google Scholar
     

  • 5.

    Akiyoshi, B. & Gull, K. Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Navarro-Mendoza, M. I. et al. Early diverging fungus mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 29, 3791–3802 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Zhang, H. & Dawe, R. K. Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res. 20, 403–412 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Bodor, D.L., Mata, J.F., Sergeev, M., David, A.F., Salimian, K.J., Panchenko, T. et al. The quantitative architecture of centromeric chromatin. Elife 3, e02137 (2014)

  • 9.

    Wang, K., Wu, Y., Zhang, W., Dawe, R. K. & Jiang, J. Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res. 24, 107–116 (2014).

    Article 

    Google Scholar
     

  • 10.

    Wang, N., Liu, J., Ricci, W.A., Gent, J.I., Dawe, R.K. Maize centromeric chromatin scales with changes in genome size. Genetics 217, iyab020 (2021)

  • 11.

    Bennett, M. D., Smith, J. B., Ward, J. & Jenkins, G. The relationship between nuclear DNA content and centromere volume in higher plants. J. Cell Sci. 47, 91–115 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Neumann, P., Navrátilová, A., Schroeder-Reiter, E., Koblížková, A., Steinbauerová, V., Chocholová, E., et al. Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genet 8, e1002777 (2012).

  • 13.

    Zedek, F. & Bureš, P. Holocentric chromosomes: From tolerance to fragmentation to colonization of the land. Ann. Bot. 121, 9–16 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Levy, D. L. & Heald, R. Mechanisms of intracellular scaling. Annu. Rev. Cell Dev. Biol. 28, 113–135 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Heslop-Harrison, J., Chapman, V. & Bennett, M. D. Heteromorphic bivalent association at meiosis in bread wheat. Heredity 55, 93–103 (1985).

    Article 

    Google Scholar
     

  • 16.

    Irvine, D. V. et al. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res. 12, 805–815 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Drpic, D. et al. Chromosome segregation is biased by Kinetochore size. Curr. Biol. 28, 1344-1356.e5 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Wang, N. & Dawe, R. K. Centromere size and its relationship to haploid formation in plants. Mol. Plant. 11, 398–406 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Worrall, J. T. et al. Non-random Mis-segregation of Human Chromosomes. Cell Rep. 23, 3366–3380 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Sánchez, L., Martínez, P. & Goyanes, V. Analysis of centromere size in human chromosomes 1, 9, 15, and 16 by electron microscopy. Genome 34, 710–713 (1991).

    Article 

    Google Scholar
     

  • 21.

    Martorell, M. R., Benet, J., Márquez, C., Egozcue, J. & Navarro, J. Correlation between centromere and chromosome length in human male pronuclear chromosomes: ultrastructural analysis. Zygote 8, 79–85 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Jenkins, G. & Bennett, M. D. The intranuclear relationship between centromere volume and chromosome size in Festuca scariosa X drymeja. J. Cell Sci. 47, 117–125 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Koornneef, M., Fransz, P. & de Jong, H. Cytogenetic tools for Arabidopsis thaliana. Chromosome Res. 11, 183–194 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Moens, P. B. Kinetochore microtubule numbers of different sized chromosomes. J. Cell Biol. 83, 556–561 (1979).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Cherry, L. M., Faulkner, A. J., Grossberg, L. A. & Balczon, R. Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J. Cell Sci. 92, 281–289 (1989).

    Article 

    Google Scholar
     

  • 26.

    McEwen, B. F., Ding, Y. & Heagle, A. B. Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells. Chromosome Res 6, 123–132 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Bureš, P. & Zedek, F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution 68, 2412–2420 (2014).

    PubMed 

    Google Scholar
     

  • 28.

    Kursel, L. E. & Malik, H. S. The cellular mechanisms and consequences of centromere drive. Curr. Opin. Cell Biol. 52, 58–65 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Gregory, T.R. Animal Genome Size Database www.genomesize.com (2021).

  • 31.

    Leitch, I.J., Johnston, E., Pellicer, J., Hidalgo, O., Bennett, M.D. Plant DNA C-values database (release 7.1, Apr 2019) cvalues.science.kew.org/ (2019).

  • 32.

    Šmarda, P. et al. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91, 117–142 (2019).

    Article 

    Google Scholar
     

  • 33.

    Kullman, B., Tamm, H., Kullman, K. Fungal Genome Size Database www.zbi.ee/fungal-genomesize/ (2005).

  • 34.

    Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S. The caper package: comparative analysis of phylogenetics and evolution in R. R Package Version 5. cran.r-project.org/web/packages/caper/ (2013).

  • 35.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org/ (2020).

  • 36.

    Garamszegi, L. Z. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (Springer, 2014).

    Book 

    Google Scholar
     

  • 37.

    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article 

    Google Scholar
     

  • 39.

    Xie, D. F. et al. Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann. Bot. 125, 1039–1055 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Neumann, P. et al. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytol. 229, 2365–2377 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Read more here: Source link