Lipid biomarkers: molecular tools for illuminating the history of microbial life

  • 1.

    Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 2012).

  • 2.

    Cavosie, A. J., Valley, J. W. & Wilde, S. A. The oldest terrestrial mineral record: a review of 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia. Dev. Precambrian Geol. 15, 91–111 (2007).

    Article 

    Google Scholar
     

  • 3.

    Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    McNaughton, N. J., Compston, W. & Barley, M. E. Constraints on the age of the Warrawoona Group, eastern Pilbara Block, Western Australia. Precambrian Res. 60, 69–98 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Sugitani, K., Mimura, K., Nagaoka, T., Lepot, K. & Takeuchi, M. Microfossil assemblage from the 3400 Ma strelley pool formation in the Pilbara Craton, Western Australia: results form a new locality. Precambrian Res. 226, 59–74 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Sugitani, K. et al. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13, 507–521 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Alleon, J. et al. Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochem. Perspect. Lett. 7, 37–42 (2018).

    Article 

    Google Scholar
     

  • 8.

    Allwood, A. C. et al. Controls on development and diversity of Early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718 (2006). This paper details connections between the morphology of some of the oldest stromatolites and features of their coastal marine setting. It is key to illustrating how complex microbial communities must have existed on the Earth at least 3.45 billion years ago.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Hofmann, H., Grey, K., Hickman, A. & Thorpe, R. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 1256–1262 (1999).

    Article 

    Google Scholar
     

  • 11.

    Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. Rev. Mineral. Geochem. 43, 555–578 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Bontognali, T. R. R. et al. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl Acad. Sci. USA 109, 15146–15151 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res. 96, 63–82 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Morgan, G. J. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J. Hist. Biol. 31, 155–178 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965). This classic paper informs us how the sequences of present-day macromolecules encode a history of their origin and evolution.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins 97–166 (Elsevier, 1965).

  • 19.

    Peterson, K. J., Summons, R. E. & Donoghue, P. C. J. Molecular palaeobiology. Palaeontology 50, 775–809 (2007).

    Article 

    Google Scholar
     

  • 20.

    Gaucher, E. A. Ancestral sequence reconstruction as a tool to understand natural history and guide synthetic biology: realizing and extending the vision of Zuckerkandl and Pauling. Liberles [83] 31, 20–33 (2007).


    Google Scholar
     

  • 21.

    Kacar, B., Hanson-Smith, V., Adam, Z. R. & Boekelheide, N. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. Geobiology 15, 628–640 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    McKenna, E. J. & Kallio, R. E. Microbial metabolism of the isoprenoid alkane pristane. Proc. Natl Acad. Sci. USA 68, 1552 (1971).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Waples, D. W., Haug, P. & Welte, D. H. Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline environment. Geochim. Cosmochim. Acta 38, 381–387 (1974).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Knoll, A. H., Summons, R. E., Waldbauer, J. R. & Zumberge, J. in The Evolution of Primary Producers in the Sea (eds Falkwoski, P. & Knoll, A.H.) 133–163 (Elsevier, 2007).

  • 26.

    Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Sinninghe Damsté, J. S. & Köster, J. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett. 158, 165–173 (1998).

    Article 

    Google Scholar
     

  • 28.

    Kuypers, M. M. M. et al. Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science 293, 92–95 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986). This study is the first detailing how fossilized organic molecules can serve as SST proxies.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Schouten, S. et al. Extremely high sea-surface temperatures at low latitudes during the Middle Cretaceous as revealed by archaeal membrane lipids. Geology 31, 1069–1072 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Bobrovskiy, I., Hope, J. M., Krasnova, A., Ivantsov, A. & Brocks, J. J. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nat. Ecol. Evol. 2, 437 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 32.

    Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. Proc. Natl Acad. Sci. USA 49, 298 (1963).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Treibs, A. Chlorophyll- und Häminderivate in organischen Mineralstoffen [German]. Angew. Chem. 49, 682–686 (1936).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Hills, I. R. & Whitehead, E. V. Triterpanes in optically active petroleum distillates. Nature 209, 977–979 (1966).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Blumer, M. Pigments of a fossil echinoderm. Nature 188, 1100–1101 (1960).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Ourisson, G., Albrecht, P. & Rohmer, M. The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709–729 (1979). This review details how a particular group of bacterial membrane lipids gave rise to a ubiquitous and abundant class of chemical fossils.

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Rohmer, M. & Ourisson, G. Dérivés du bactériohopane: variations structurales et répartition [French]. Tetrahedron Lett. 17, 3637–3640 (1976).

    Article 

    Google Scholar
     

  • 38.

    Yon, D. A., Maxwell, J. R. & Ryback, G. 2,6,10-Trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary biological marker compound. Tetrahedron Lett. 23, 2143–2146 (1982).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Barrick, R. C., Hedges, J. I. & Peterson, M. L. Hydrocarbon geochemistry of the Puget Sound region — I. Sedimentary acyclic hydrocarbons. Geochim. Cosmochim. Acta 44, 1349–1362 (1980).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Requejo, A. G. & Quinn, J. G. Geochemistry of C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary. Geochim. Cosmochim. Acta 47, 1075–1090 (1983).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Dunlop, R. W. & Jefferies, P. R. Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org. Geochem. 8, 313–320 (1985).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Volkman, J. K., Barrett, S. M. & Dunstan, G. A. C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms.Org. Geochem. 21, 407–414 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Sinninghe Damste, J. S. et al. The rise of the rhizosolenid diatoms. Science 304, 584–587 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Rowland, S. J. et al. Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58, 717–728 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 45.

    Blumer, M., Guillard, R. R. L. & Chase, T. Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183–189 (1971).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Rohmer, M., Bouvier-Nave, P. & Ourisson, G. Distribution of hopanoid triterpanes in prokaryotes. J. Gen. Microbiol. 130, 1137–1150 (1984).

    CAS 

    Google Scholar
     

  • 48.

    Volkman, J. K. et al. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29, 1163–1179 (1998). This paper reviews the laborious but essential work of surveying biomarkers across living organisms. The distribution of biomarkers in modern algae provides a solid foundation on which molecular fossils have historically been interpreted.

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Sturt, H. F., Summons, R. E., Smith, K., Elvert, M. & Hinrichs, K.-U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry — new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass. Spectrom. 18, 617–628 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 50.

    White, D. C. & Ringelberg, D. B. in Techniques in Microbial Ecology. (eds Burlage, R. S. et al.) 255–272 (Oxford Univ. Press, 1998).

  • 51.

    Vestal, J. R. & White, D. C. Lipid analysis in microbial ecology. Bioscience 39, 535–541 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Lipp, J. S. & Hinrichs, K.-U. Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816–6833 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Rossel, P. E. et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org. Geochem. 39, 992–999 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Taylor, J. & Parkes, R. J. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129, 3303–3309 (1983).

    CAS 

    Google Scholar
     

  • 55.

    Brocks, J. J. & Pearson, A. Building the biomarker tree of life. Rev. Mineral. Geochem. 59, 233–258 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Volkman, J. K. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org. Geochem. 36, 139–159 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide 2nd edn (Cambridge Univ. Press, 2005).

  • 59.

    Pearson, A. 12.11 Lipidomics for geochemistry. Treatise Geochem. 12, 291–336 (2014).

    Article 

    Google Scholar
     

  • 60.

    Newman, D. K., Neubauer, C., Ricci, J. N., Wu, C.-H. & Pearson, A. Cellular and molecular biological approaches to interpreting ancient biomarkers. Annu. Rev. Earth Planet. Sci. 44, 493–522 (2016). This paper details our changing understanding on the role of 2-methylhopanoids in bacteria, and how this change impacts our interpretation of the related molecular fossil. It provides a case study on the importance of knowing what a biomarker biologically does in a microbe, not just its presence or absence.

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Ochs, D., Kaletta, C., Entian, K. D., Beck-Sickinger, A. & Poralla, K. Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism. J. Bacteriol. 174, 298–302 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 62.

    Schmerk, C. L. et al. Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. Environ. Microbiol. 17, 735–750 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Welander, P. V. et al. Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology 10, 163–177 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W. & Higgins, M. B. Novel hopanoid cyclases from the environment. Environ. Microbiol. 9, 2175–2188 (2007). This paper is the first example of using a biomarker biosynthesis gene, the squalene–hopene cyclase gene necessary for hopanoid production, to demonstrate the potential diversity of biomarker producers in environmental metagenomic data sets.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 65.

    Villanueva, L., Rijpstra, W. I. C., Schouten, S. & Damsté, J. S. S. Genetic biomarkers of the sterol–biosynthetic pathway in microalgae. Environ. Microbiol. Rep. 6, 35–44 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 66.

    Villanueva, L., Schouten, S. & Sinninghe Damsté, J. S. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ. Microbiol. 17, 3527–3539 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 67.

    Banta, A. B., Wei, J. H. & Welander, P. V. A distinct pathway for tetrahymanol synthesis in bacteria. Proc. Natl Acad. Sci. USA 112, 13478–13483 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 69.

    Eglinton, G. & Calvin, M. Chemical fossils. Sci. Am. 216, 32–43 (1967).

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Jensen, S. V. L. Bacterial carotenoids. Acta Chem. Scand. 19, 1025–30 (1965).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 71.

    Jensen, S. V. L. Bacterial carotenoids XXII. Acta Chem. Scand. 21, 2578–80 (1967).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 72.

    Summons, R. E. & Powell, T. G. Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature 319, 763–765 (1986).

    CAS 
    Article 

    Google Scholar
     

  • 73.

    Abella, C., Montesinos, E. & Guerrero, R. in Shallow Lakes Contributions to Their Limnology 173–181 (Springer, 1980).

  • 74.

    French, K. L., Rocher, D., Zumberge, J. E. & Summons, R. E. Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13, 139–151 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 75.

    Sinninghe Damsté, J. S. & Koopmans, M. P. The fate of carotenoids in sediments: an overview. Pure Appl. Chem. 69, 2067–2074 (1997).

    Article 

    Google Scholar
     

  • 76.

    Frigaard, N.-U., Maresca, J. A., Yunker, C. E., Jones, A. D. & Bryant, D. A. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 186, 5210–5220 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 77.

    Maresca, J., Graham, J. & Bryant, D. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynthesis Res. 97, 121–140 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 78.

    Maresca, J. A., Romberger, S. P. & Bryant, D. A. Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. J. Bacteriol. 190, 6384–6391 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 79.

    Vogl, K. & Bryant, D. A. Biosynthesis of the biomarker okenone: χ-ring formation. Geobiology 10, 205–215 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 80.

    Krügel, H., Krubasik, P., Weber, K., Saluz, H. P. & Sandmann, G. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim. Biophys. Acta 1439, 57–64 (1999).

    PubMed 
    Article 

    Google Scholar
     

  • 81.

    Krubasik, P. & Sandmann, G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol. Gen. Genet. 263, 423–432 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 82.

    Graham, J. E., Lecomte, J. T. J. & Bryant, D. A. Synechoxanthin, an aromatic C40 xanthophyll that is a major carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. J. Nat. Products 71, 1647–1650 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Graham, J. E. & Bryant, D. A. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 190, 7966–7974 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 84.

    Koopmans, M. P., Schouten, S., Kohnen, M. E. L. & Damsté, J. S. S. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60, 4873–4876 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 85.

    Brocks, J. J. & Schaeffer, P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek formation. Geochim. Cosmochim. Acta 72, 1396–1414 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 86.

    Yamaguchi, M. On carotenoids of a sponge “Reniera japonica”. Bull. Chem. Soc. Jpn. 30, 111–114 (1957).

    CAS 
    Article 

    Google Scholar
     

  • 87.

    Yamaguchi, M. Renieratene, a new carotenoid containing benzene rings, isolated from a sea sponge. Bull. Chem. Soc. Jpn. 31, 739–742 (1958).

    CAS 
    Article 

    Google Scholar
     

  • 88.

    Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 89.

    French, K. L., Birdwell, J. E. & Berg, V. Biomarker similarities between the saline lacustrine eocene green river and the paleoproterozoic Barney Creek formations. Geochim. Cosmochim. Acta 274, 228–245 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 90.

    Cui, X. et al. Niche expansion for phototrophic sulfur bacteria at the Proterozoic–Phanerozoic transition. Proc. Natl Acad. Sci. USA 117, 17599–17606 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 91.

    Koopmans, M. P., De Leeuw, J. W. & Sinninghe Damsté, J. S. Novel cyclised and aromatised diagenetic products of β-carotene in the Green River Shale. Org. Geochem. 26, 451–466 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 92.

    Behrens, A., Schaeffer, P., Bernasconi, S. & Albrecht, P. Mono- and bicyclic squalene derivatives as potential proxies for anaerobic photosynthesis in lacustrine sulfur-rich sediments. Geochim. Cosmochim. Acta 64, 3327–3336 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 93.

    Schaeffer, P., Adam, P., Wehrung, P. & Albrecht, P. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedron Lett. 38, 8413–8416 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 94.

    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578 (2017). This study highlights how specific chemical modifications in lipid structures, in this case methylation of sterol molecules, can be informative and can be used to track the emergence of specific microbial groups in the geologic record.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 95.

    Javaux, E. J. & Knoll, A. H. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229 (2017).

    Article 

    Google Scholar
     

  • 96.

    Knoll, A. H. The early evolution of eukaryotes: a geological perspective. Science 256, 622–627 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 97.

    Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in diverse bacteria. Front. Microbiol. 7, 990 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021). This recent study uses a phylogenetic approach to assess the evolutionary history of sterol biosynthesis and the potential impact of bacterial sterol biosynthesis on the rise of eukaryotes.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 99.

    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B Biol. Sci. 361, 903–915 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 100.

    Luo, G. et al. Rapid oxidation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 101.

    Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 102.

    Barker, H. A. Studies upon the methane-producing bacteria. Arch. für Mikrobiologie 7, 420–438 (1936).

    CAS 
    Article 

    Google Scholar
     

  • 103.

    Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977). This classic study shows how ribosomal RNA sequences reveal that all life follows one of three lines of descent from a common ancestor.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 104.

    Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 105.

    Blank, C. E. Not so old archaea — the antiquity of biogeochemical processes in the archaeal domain of life. Geobiology 7, 495–514 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 106.

    Salvador-Castell, M., Tourte, M. & Oger, P. M. In search for the membrane regulators of archaea. Int. J. Mol. Sci. 20, 4434 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 107.

    Koga, Y. & Morii, H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci. Biotechnol. Biochem. 69, 2019–2034 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 108.

    Moldowan, J. M. & Seifert, W. K. Head-to-head linked isoprenoid hydrocarbons in petroleum. Science 204, 169–171 (1979).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 109.

    Baumann, L. M. F. et al. Intact polar lipid and core lipid inventory of the hydrothermal vent methanogens Methanocaldococcus villosus and Methanothermococcus okinawensis. Org. Geochem. 126, 33–42 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 110.

    Summons, R. E., Powell, T. G. & Boreham, C. J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52, 1747–1763 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 111.

    Tierney, J. E. in Treatise on Geochemistry Vol. 12 (eds Holland, H.D. & Turekian, K.K.) 379–393 (Elsevier, 2014).

  • 112.

    Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. & Sinninghe Damsté, J. S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71, 703–713 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Schouten, S., Forster, A., Panoto, F. E. & Sinninghe Damsté, J. S. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Org. Geochem. 38, 1537–1546 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 114.

    Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002). This study establishes the basis for the TEX86 palaeotemperature proxy as a SST based on the distribution of archaeal GDGT membrane lipids in marine sediments.

    CAS 
    Article 

    Google Scholar
     

  • 115.

    Schouten, S., Hopmans, E. C. & Damsté, J. S. S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Org. Geochem. 35, 567–571 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 116.

    Tierney, J. E. GDGT thermometry: lipid tools for reconstructing paleotemperatures. Paleontol. Soc. Pap. 18, 115–132 (2012).

    Article 

    Google Scholar
     

  • 117.

    Zhang, Y. G., Pagani, M. & Wang, Z. Ring Index: a new strategy to evaluate the integrity of TEX86 paleothermometry. Paleoceanography 31, 220–232 (2016).

    Article 

    Google Scholar
     

  • 118.

    Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B. & Sinninghe Damsté, J. S. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim. Cosmochim. Acta 72, 1154–1173 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 119.

    Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 120.

    Trommer, G. et al. Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea. Org. Geochem. 40, 724–731 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 121.

    Tierney, J. E. & Tingley, M. P. A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim. Cosmochim. Acta 127, 83–106 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 122.

    Tierney, J. E. & Tingley, M. P. A TEX86 surface sediment database and extended Bayesian calibration. Sci. Data 2, 150029 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 123.

    Zhou, A. et al. Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius. Environ. Microbiol. 22, 343–353 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 124.

    Qin, W. et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc. Natl Acad. Sci. USA 112, 10979–10984 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 125.

    Hurley, S. J. et al. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc. Natl Acad. Sci. USA 113, 7762–7767 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 126.

    DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 127.

    Lincoln, S. A. et al. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 111, 9858–9863 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 128.

    Zeng, Z. et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 116, 22505–22511 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 129.

    Besseling, M. A. et al. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: implications for lipid biosynthesis in archaea. Sci. Rep. 10, 1–10 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 130.

    Pearson, A. Resolving a piece of the archaeal lipid puzzle. Proc. Natl Acad. Sci. USA 116, 22423–22425 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 131.

    Gold, D. A., O’Reilly, S. S., Luo, G., Briggs, D. E. G. & Summons, R. E. Prospects for sterane preservation in sponge fossils from museum collections and the utility of sponge biomarkers for molecular clocks. Bull. Peabody Mus. Nat. History 57, 181–189 (2016).

    Article 

    Google Scholar
     

  • 132.

    French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 133.

    Lee, A. K. et al. C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc. Natl Acad. Sci. USA 115, 5884–5889 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 134.

    Pollier, J. et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat. Microbiol. 4, 226–233 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 135.

    Cronin, J. R., Pizzarello, S., Epstein, S. & Krishnamurthy, R. V. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 57, 4745–4752 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 136.

    Summons, R. E., Albrecht, P., McDonald, G. & Moldowan, J. M. Molecular biosignatures. Strateg. Life Detection 25, 133–159 (2008).

    Article 

    Google Scholar
     

  • 137.

    Davila, A. F. & McKay, C. P. Chance and necessity in biochemistry: implications for the search for extraterrestrial biomarkers in Earth-like environments. Astrobiology 14, 534–540 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 138.

    Summons, R. E. et al. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 139.

    McKay, C. P. What is life — and how do we search for it in other worlds? PLoS Biol. 2, e302 (2004).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 140.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth/‘s early ocean and atmosphere. Nature 506, 307–315 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 141.

    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi–Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 142.

    Welander, P. V., Coleman, M., Sessions, A. L., Summons, R. E. & Newman, D. K. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc. Natl Acad. Sci. USA 107, 8537–8542 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 143.

    Zundel, M. & Rohmer, M. Prokaryotic triterpenoids. 3. The biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus. Eur. J. Biochem. 150, 35–39 (1985).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 144.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 145.

    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 146.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 147.

    Schmerk, C. L., Bernards, M. A. & Valvano, M. A. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J. Bacteriol. 193, 6712–6723 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 148.

    Ricci, J. N., Morton, R., Kulkarni, G., Summers, M. L. & Newman, D. K. Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme. Geobiology 15, 173–183 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 149.

    Garby, T. J. et al. Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress. Appl. Environ. Microbiol. 83, e00777–00717 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 150.

    Bradley, A. S. et al. Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment. PLoS ONE 12, e0173323 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 151.

    Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).

    Article 

    Google Scholar
     

  • 152.

    Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 153.

    Wu, Y.-C., Rasmussen, M. D., Bansal, M. S. & Kellis, M. TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 62, 110–120 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 154.

    Magnabosco, C., Moore, K. R., Wolfe, J. M. & Fournier, G. P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 155.

    Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • 156.

    Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150493 (2016).

    Article 

    Google Scholar
     

  • Read more here: Source link