Zonaed Siddiki, A., Miah, G., Islam, M.S., et al., Goat genomic resources: the search for genes associated with its economic traits, Int. J. Genomics, 2020, 5940205. doi.org/10.1155/2020/5940205
Amills, M., Capote, J., and Tosser-Klopp, G., Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces, Anim. Genet., 2017, vol. 48, no. 6, pp. 631–644. doi.org/10.1111/age.12598
Zheng, Z., Wang, X., Li, M., et al., The origin of domestication genes in goats, Sci. Adv., 2020, vol. 6, no. 21. eaaz5216. doi.org/10.1126/sciadv.aaz5216
Simpson, H.V., Umair, S., Hoang, V.C., and Savoian, M.S., Histochemical study of the effects on abomasal mucins of Haemonchus contortus or Teladorsagia circumcincta infection in lambs, Vet. Parasitol., 2016, vol. 226, pp. 210–221. doi.org/10.1016/j.vetpar.2016.06.026
The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture, Scherf, B.D. and Pilling, D., Eds., Rome: FAO Commission on Genetic Resources for Food and Agriculture Assessments, 2015.
Ganbold, O., Lee, S.H., Paek, W.K., et al., Mitochondrial DNA variation and phylogeography of native Mongolian goats, Asian-Australas. J. Anim. Sci., 2020, vol. 33, no. 6, pp. 902–912. doi.org/10.5713/ajas.19.0396
Waki, A., Sasazaki, S., Kobayashi, E., and Mannen, H., Paternal phylogeography and genetic diversity of East Asian goats, Anim. Genet., 2015, vol. 46, no. 3, pp. 337–339. doi.org/10.1111/age.12293
Tabata, R., Kawaguchi, F., Sasazaki, S., et al., The Eurasian steppe is an important goat propagation route: a phylogeographic analysis using mitochondrial DNA and Y-chromosome sequences of Kazakhstani goats, Anim. Sci. J., 2018, vol. 90, pp. 317–322. doi.org/10.1111/asj.13144
Kalinowski, S.T., Wagner, A.P., and Taper, M.L., ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship, Mol. Ecol. Notes, 2006, vol. 6, pp. 576–579. doi.org/10.1111/j.1471-8286.2006.01256.x
Luikart, G., Gielly, L., Excoffier, L., et al., Multiple maternal origins and weak phylogeographic structure in domestic goats, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 10, pp. 5927–5932. doi.org/10.1073/pnas.091591198
Al-Araimi, N.A., Gaafar, O.M., Costa, V., et al., Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis, PLoS One, 2017, vol. 12, no. 12. doi.org/10.1371/journal.pone.0190235
Vidal, O., Drögemüller, C., Obexer-Ruff, G., et al., Differential distribution of Y-chromosome haplotypes in Swiss and Southern European goat breeds, Sci. Rep., 2017, vol. 7, no. 1, p. 16161. doi.org/10.1038/s41598-017-15593-1
Chao, K.H., Barton, K., and Lanfear, R., Sangeranalyser: simple and interactive analysis of Sanger sequencing data in R, bioRxiv, 2020.
Okonechnikov, K., Golosova, O., and Fursov, M., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167.
Kumar, S., Tamura, K., and Nei, M., MEGA: molecular evolutionary genetics analysis software for microcomputers, Bioinformatics, 1994, vol. 10, no. 2, pp. 189–191.
Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47–50. doi.org/10.1177/117693430500100003
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299—3302.
Huelsenbeck, J.P. and Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, 2001, vol. 17, pp. 754–755. doi.org/10.1093/bioinformatics/17.8.754
Lanfear, R., Frandsen, P.B., Wright, A.M., et al., PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses, Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 772–773.
Leigh, J.W. and Bryant, D., POPART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110–1116.
Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.
Deniskova, T., Bakoev, N., Dotsev, A., et al., Maternal origins and haplotype diversity of seven Russian goat populations based on the D-loop sequence variability, Animals (Basel), 2020, vol. 10, no. 9, p. 1603. doi.org/10.3390/ani10091603
Cañón, J., García, D., García-Atance, M.A., et al., ECONOGENE Consortium: geographical partitioning of goat diversity in Europe and the Middle East, Anim. Genet., 2006, vol. 37, no. 4, pp. 327–334. doi.org/10.1111/j.1365-2052.2006.01461.x
Pereira, F., Queirós, S., Gusmão, L., et al., Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa, Mol. Biol. Evol., 2009, vol. 26, no. 12, pp. 2765–2773. doi.org/10.1093/molbev/msp20
Beketov, S.V., Piskunov, A.K., Voronkova, V.N., et al., Genetic diversity and phylogeny of fleece-bearing goats of Central and Middle Asia, Russ. J. Genet., 2021, vol. 57, no. 7, pp. 816–824. doi.org/10.1134/S1022795421070036
Takahashi, H., Nyamsamba, D., Mandakh, B., et al., Genetic structure of Mongolian goat populations using microsatellite loci analysis, Asian-Australas. J. Anim. Sci., 2008, vol. 21, no. 7, pp. 947–953. doi.org/10.5713/ajas.2008.70285
Stolpovskii, Yu.A., Tsendsuren, Ts., Kol, N.V., et al., Genofondy domashnikh zhivotnykh Mongolii (Gene Pools of Domestic Animals in Mongolia), Moscow: KMK, 2013.
Nandintsetseg, B., Shinoda, M., Du, C., and Munkhjargal, E., Cold-season disasters on the Eurasian steppes: climate-driven or man-made, Sci. Rep., 2018, vol. 8, no. 1, p. 14769. doi.org/10.1038/s41598-018-33046-1
Enkhtuvshin, B., Kuras, L.V., and Tsybenov, B.D., Traditional cattle breeding of Mongolian nomads within context of globalization, Vestn. Buryat. Nauchn. Tsentra Sib. Otd. Ross. Akad. Nauk, 2013, no. 4, pp. 208–223.
Read more here: Source link