The genomic origins of the Bronze Age Tarim Basin mummies

  • 1.

    Peyrot, M. in Aspects of Globalisation: Mobility, Exchange and the Development of Multi-Cultural States 12–17 (2017).

  • 2.

    Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 3.

    Hemphill, B. E. & Mallory, J. P. Horse-mounted invaders from the Russo-Kazakh steppe or agricultural colonists from western Central Asia? A craniometric investigation of the Bronze Age settlement of Xinjiang. Am. J. Phys. Anthropol. 124, 199–222 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Betts, A., Jia, P. & Abuduresule, I. A new hypothesis for early Bronze Age cultural diversity in Xinjiang, China. Archaeol. Res. Asia 17, 204–213 (2019).

    Article 

    Google Scholar
     

  • 5.

    Li, C. et al. Evidence that a West-East admixed population lived in the Tarim Basin as early as the early Bronze Age. BMC Biol. 8, 15 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    Li, C. et al. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China. BMC Genet. 16, 78 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 7.

    Ning, C. et al. Ancient genomes reveal Yamnaya-related ancestry and a potential source of Indo-European speakers in Iron Age Tianshan. Curr. Biol. 29, 2526–2532 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zhou, X. et al. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 6, 78–87 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    Wang, T. et al. Tianshanbeilu and the isotopic millet road: reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. Natl Sci. Rev. 6, 1024–1039 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Zhang, Y. et al. Holocene environmental changes around Xiaohe Cemetery and its effects on human occupation, Xinjiang, China. J. Geogr. Sci. 27, 752–768 (2017).

    Article 

    Google Scholar
     

  • 11.

    Hong, Z., Jian-Wei, W., Qiu-Hong, Z. & Yun-Jiang, Y. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. J. Arid Environ. 55, 545–553 (2003).

    Article 
    ADS 

    Google Scholar
     

  • 12.

    Jia, P. & Betts, A. A re-analysis of the Qiemu’erqieke (Shamirshak) cemeteries, Xinjiang, China. J. Indo-Eur. Stud. 38, 275–317 (2010).


    Google Scholar
     

  • 13.

    Peyrot, M. The deviant typological profile of the Tocharian branch of Indo-European may be due to Uralic substrate influence. Indo-Eur. Linguist. 7, 72–121 (2019).

    Article 

    Google Scholar
     

  • 14.

    Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 15.

    Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 16.

    Mallory, J. P. & Mair, V. H. The Tarim Mummies: Ancient China and the Mystery of the Earliest Peoples from the West (Thames & Hudson, 2000).

  • 17.

    Barber, E. W. Mummies of Urumchi (W. W. Norton & Co., 1999).

  • 18.

    Mair, V. H. Prehistoric Caucasoid corpses of the Tarim Basin. J. Indo-Euro. Stud. 23, 281–307 (1995).


    Google Scholar
     

  • 19.

    Mair, V. H. in The Bronze Age and Early Iron Age Peoples of Eastern Central Asia Vol. 2 835–855 (Institute for the Study of Man and the University of Pennsylvania Museum, 1998).

  • 20.

    Mallory, J. P. The Problem of Tocharian Origins: an Archaeological Perspective (Univ. Pennsylvania Press, 2015).

  • 21.

    Chen, K. & Hiebert, F. T. The late prehistory of Xinjiang in relation to its neighbors. J. World Prehist. 9, 243–300 (1995).

    Article 

    Google Scholar
     

  • 22.

    Han, K. Craniometric study on the ancient individuals from the Gumugou site, Xinjiang (in Chinese). Kaogu Xuebao 361–384 (1986).

  • 23.

    Kuzmina, E. E. in Archeology, Migration and Nomadism, Linguistics Vol. 1 63–93 (Univ. Pennsylvania Museum Publications, 1998).

  • 24.

    Li, Y. Agriculture and palaeoeconomy in prehistoric Xinjiang, China (3000–200 BC). Veg. Hist. Archaeobot. 30, 287–303 (2021).

    Article 

    Google Scholar
     

  • 25.

    Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38 (2012).

    Article 

    Google Scholar
     

  • 26.

    Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Feng, Q. et al. Genetic history of Xinjiang’s Uyghurs suggests Bronze Age multiple-way contacts in Eurasia. Mol. Biol. Evol. 34, 2572–2582 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248–E11255.

  • 29.

    Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia. Cell 181, 1232–1245 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell 183, 890–904 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 32.

    Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 33.

    Li, J.-F. et al. Buried in sands: environmental analysis at the archaeological site of Xiaohe Cemetery, Xinjiang, China. PLoS ONE 8, e68957 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 34.

    Qiu, Z. et al. Paleo-environment and paleo-diet inferred from Early Bronze Age cow dung at Xiaohe Cemetery, Xinjiang, NW China. Quat. Int. 349, 167–177 (2014).

    Article 

    Google Scholar
     

  • 35.

    Yang, Y. et al. Proteomics evidence for kefir dairy in Early Bronze Age China. J. Archaeol. Sci. 45, 178–186 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Xie, M. et al. Identification of a dairy product in the grass woven basket from Gumugou Cemetery (3800 BP, northwestern China). Quat. Int. 426, 158–165 (2016).

    Article 

    Google Scholar
     

  • 37.

    Yang, R. et al. Investigation of cereal remains at the Xiaohe Cemetery in Xinjiang, China. J. Archaeol. Sci. 49, 42–47 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Zhang, G. et al. Ancient plant use and palaeoenvironmental analysis at the Gumugou Cemetery, Xinjiang, China: implication from desiccated plant remains. Archaeol. Anthropol. Sci. 9, 145–152 (2017).

    Article 
    ADS 

    Google Scholar
     

  • 39.

    Yu, J. & He, J. Significant discoveries from the excavation of Jimunai Tongtiandong site (in Chinese). Wenwubao 8 (2017).

  • 40.

    Hollard, C. et al. New genetic evidence of affinities and discontinuities between Bronze Age Siberian populations. Am. J. Phys. Anthropol. 167, 97–107 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 41.

    Li, C. et al. Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J. Archaeol. Sci. 38, 115–119 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Stevens, C. J. & Fuller, D. Q. The spread of agriculture in eastern Asia: archaeological bases for hypothetical farmer/language dispersals. Lang. Dyn. Change 7, 152–186 (2017).

    Article 

    Google Scholar
     

  • 43.

    Abuduresule, I. Archaeological report of Xiaohe cemetery of 2003 (in Chinese). Wenwu 4–42 (2007).

  • 44.

    Abuduresule, Y., Li, W. & Hu, X. in The Cultures of Ancient Xinjiang, Western China: Crossroads of the Silk Roads 19–51 (Archaeopress, 2019).

  • 45.

    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 48.

    Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, (2015).

  • 49.

    Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, (2016).

  • 51.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 58.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 60.

    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 61.

    Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 62.

    Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. Preprint at doi.org/10.1101/023374 (2015).

  • 63.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 65.

    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 66.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, (2015).

  • 68.

    Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 69.

    Ringbauer, H., Novembre, J. & Steinrücken, M. Detecting runs of homozygosity from low-coverage ancient DNA. Preprint at doi.org/10.1101/2020.05.31.126912 (2020).

  • 70.

    Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 71.

    Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 72.

    Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link