Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions

  • 1.

    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

  • 2.

    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

  • 4.

    Myles, I. A. et al. A method for culturing Gram− skin microbiota. BMC Microbiol. 16, 60 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Timm, C. M. et al. Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome 8, 58 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Jagielski, T. et al. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 14, 3 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761–6771 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Jégousse, C., Vannier, P., Groben, R., Glöckner, F. O. & Marteinsson, V. A total of 219 metagenome-assembled genomes of microorganisms from Icelandic marine waters. PeerJ 9, e11112 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol. 18, 181 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Orakov A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178.

  • 18.

    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Sangwan, N., Xia, F. & Gilbert, J. A. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4, 8 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Saheb Kashaf, S., Almeida, A., Segre, J. A. & Finn, R. D. Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nat. Protoc. 16, 2520–2541 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Pallen, M. J., Telatin, A. & Oren, A. The next million names for archaea and bacteria. Trends Microbiol. 29, 289–298 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Colquhoun R. M., Hall M. B., Lima L., Roberts L. W. Nucleotide-resolution bacterial pan-genomics with reference graphs. Preprint at bioRxiv doi.org/10.1186/s13059-021-02473-1 (2020).

  • 24.

    Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Tournu, H., Fiori, A., Van & Dijck, P. Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog. 9, e1003447 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Jo, J.-H., Kennedy, E. A. & Kong, H. H. Topographical and physiological differences of the skin mycobiome in health and disease. Virulence 8, 324–333 (2017).

    PubMed 

    Google Scholar
     

  • 27.

    Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. doi.org/10.1038/s41587-020-00774-7 (2020).

  • 28.

    Paez-Espino, D. et al. IMG/VR: a database of cultured and uncultured DNA viruses and retroviruses. Nucleic Acids Res. 45, D457–D465 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Camarillo-Guerrero, L. F., Almeida, A. & Rangel-Pineros, G. Massive expansion of human gut bacteriophage diversity. Preprint at bioRxiv doi.org/10.1016/j.cell.2021.01.029 (2020).

  • 30.

    Buttimer C. et al. Genome sequence of jumbo phage vB_AbaM_ME3 of Acinetobacter baumanni. Genome Announc. doi.org/10.1128/genomeA.00431-16 (2016).

  • 31.

    Paddison, P. et al. The roles of the bacteriophage T4 r genes in lysis inhibition and fine-structure genetics: a new perspective. Genetics 148, 1539–1550 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Cole, J. R. et al. The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35, D169–D172 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    McIver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics 34, 1235–1237 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Uritskiy G. V., DiRuggiero J. & Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome doi.org/10.1186/s40168-018-0541-1 (2018).

  • 37.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–D342. (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Bushnell B. BBMap sourceforge.net/projects/bbmap (2014).

  • 42.

    von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019).


    Google Scholar
     

  • 43.

    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Gu Z. ComplexHeatmap: Make Complex Heatmaps. R package version 1 doi.org/10.1093/bioinformatics/btw313 (2015).

  • 45.

    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics doi.org/10.1093/bioinformatics/btz848 (2019).

  • 46.

    Parks D. H. et al. Selection of representative genomes for 24,706 bacterial and archaeal species clusters provide a complete genome-based taxonomy. Preprint at bioRxiv doi.org/10.1038/s41587-020-0501-8 (2019).

  • 47.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).


    Google Scholar
     

  • 56.

    Muller, J. et al. eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res. 38, D190–D195 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link