Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome

  • 1.

    Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19, 455–469 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).

    PubMed 

    Google Scholar
     

  • 4.

    Zhu, F. et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry 25, 2905–2918 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Liu, X. et al. A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discov. 7, 9 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16, 191 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Burgess, S., Timpson, N. J., Ebrahim, S. & Davey Smith, G. Mendelian randomization: where are we now and where are we going? Int. J. Epidemiol. 44, 379–388 (2015).

    PubMed 

    Google Scholar
     

  • 12.

    Yang, Q., Lin, S. L., Kwok, M. K., Leung, G. M. & Schooling, C. M. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. Am. J. Epidemiol. 187, 1916–1922 (2018).

    PubMed 

    Google Scholar
     

  • 13.

    Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Sakaue, S. et al. Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan. Nat. Med. 26, 542–548 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Cox, A. J. et al. Association of SNPs in the UGT1A gene cluster with total bilirubin and mortality in the Diabetes Heart Study. Atherosclerosis 229, 155–160 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Katano, Y. et al. Complete genome sequence of Oscillibacter valericigenes Sjm18-20T (=NBRC 101213T). Stand. Genom. Sci. 6, 406–414 (2012).

    CAS 

    Google Scholar
     

  • 20.

    Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264.e10 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Hu, H. J. et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One 10, e0134333 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Tims, S. et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 7, 707–717 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Noack, J., Dongowski, G., Hartmann, L. & Blaut, M. The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J. Nutr. 130, 1225–1231 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    PeBenito, A. et al. Comparative prevalence of Oxalobacter formigenes in three human populations. Sci. Rep. 9, 574 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat. Genet. 52, 669–679 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Huo, Y. et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA 313, 1325–1335 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Reese, A. T. et al. Microbial nitrogen limitation in the mammalian large intestine. Nat. Microbiol. 3, 1441–1450 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31, 375–390.e11 (2019).

    PubMed 

    Google Scholar
     

  • 32.

    Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Choi, W. M. et al. Glutamate signaling in hepatic stellate cells drives alcoholic steatosis. Cell Metab. 30, 877–889.e877 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Kang, D. J. et al. Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology 64, 1232–1248 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Long, T. et al. Plasma metals and cardiovascular disease in patients with type 2 diabetes. Environ. Int. 129, 497–506 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Kuo, C. F., Grainge, M. J., Zhang, W. & Doherty, M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    PubMed 

    Google Scholar
     

  • 37.

    Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).


    Google Scholar
     

  • 40.

    Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Polderman, T. J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Jie, Z. et al. A transomic cohort as a reference point for promoting a healthy human gut microbiome. Med. Microecol. 8, 100039 (2021).


    Google Scholar
     

  • 44.

    Zhu, J. et al. Over 50,000 metagenomically assembled draft genomes for the human oral microbiome reveal new taxa. Genomics Proteom. Bioinform. doi.org/10.1016/j.gpb.2021.05.001 (2021).

  • 45.

    Liu, X. et al. Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome. Preprint at bioRxiv doi.org/10.1101/2021.05.06.443017 (2021).

  • 46.

    Fang, C. et al. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. Gigascience 7, 1–8 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Vieira-Silva, S. et al. Species-function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42, D459–D471 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Teumer, A. Common methods for performing Mendelian randomization. Front. Cardiovasc. Med. 5, 51 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Permutt, T. & Hebel, J. R. Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics 45, 619–622 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link