Establishment of serum-free adapted Chinese hamster ovary cells with double knockout of GDP-mannose-4,6-dehydratase and GDP-fucose transporter

  • Aggarwal RS (2014) What’s fueling the biotech engine-2012 to 2013. Nat Biotechnol 32:32–39. doi.org/10.1038/nbt.2794

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41–53. doi.org/10.1093/glycob/cwg054

    CAS 
    Article 

    Google Scholar
     

  • Chan KF, Shahreel W, Wan C et al (2016) Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnol J 11:399–414. doi.org/10.1002/biot.201500331

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chung S, Quarmby V, Gao X et al (2012) Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities. Mabs 4:326–340. doi.org/10.4161/mabs.19941

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumont J, Euwart D, Mei B et al (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122. doi.org/10.3109/07388551.2015.1084266

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Endo T, Ohbayashi H, Hayashi Y et al (1988) Structural study on the carbohydrate moiety of human placental alkaline phosphatase. J Biochem 103:182–187. doi.org/10.1093/oxfordjournals.jbchem.a122228

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–176. doi.org/10.5661/bger-28-147

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Haryadi R, Zhang P, Chan KF, Song Z (2013) CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies. Bioengineered 4:90–94. doi.org/10.4161/bioe.22262

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossler P, Chumsae C, Racicot C et al (2017) Arabinosylation of recombinant human immunoglobulin-based therapeutics. Mabs 9:715–734. doi.org/10.1080/19420862.2017.1294295

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iida S, Misaka H, Inoue M et al (2006) Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin Cancer Res 12:2879–2887. doi.org/10.1158/1078-0432

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ikegami K, Liao XH, Hoshino Y et al (2014) Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep 9(3):801–809. doi.org/10.1016/j.celrep.2014.10.006

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai-Nishiya H, Mori K, Inoue M et al (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84. doi.org/10.1186/1472-6750-7-84

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jefferis R (2016) Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res 2016:5358272. doi.org/10.1155/2016/5358272

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanda Y, Imai-Nishiya H, Kuni-Kamochi R et al (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130:300–310. doi.org/10.1016/j.jbiotec.2007.04.025

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65:306–322. doi.org/10.1002/bab.1617

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kondo A, Suzuki J, Kuraya N et al (1990) Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric Biol Chem 54:2169–2170. doi.org/10.1271/bbb1961.54.2169

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kuriakose A, Chirmule N, Nair P (2016) Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res 2016:1298473. doi.org/10.1155/2016/1298473

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louie S, Haley B, Marshall B et al (2017) FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Biotechnol Bioeng 114:632–644. doi.org/10.1002/bit.26188

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ma D, Russell DG, Beverley SM et al (1997) Golgi GDP-mannose uptake requires Leichmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters. J Biol Chem 272:3799–3805

    CAS 
    Article 

    Google Scholar
     

  • Malphettes L, Freyvert Y, Chang J et al (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106:774–783. doi.org/10.1002/bit.22751

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Misaki R, Fukura N, Kajiura H et al (2016) Recombinant production and characterization of human anti-influenza virus monoclonal antibodies identified from hybridomas fused with human lymphocytes. Biologicals 44(5):394–402. doi.org/10.1016/j.biologicals.2016.05.006

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mori K, Kuni-Kamochi R, Yamane-Ohnuki N et al (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88:901–908. doi.org/10.1002/bit.20326

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Niwa R, Shoji-Hosaka E, Sakurada M et al (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133. doi.org/10.1158/0008-5472

    Article 
    PubMed 

    Google Scholar
     

  • Ohashi H, Ohashi T, Kajiura H et al (2017) Fucosyltransferases produce N-glycans containing core L-galactose. Biochem Biophys Res Commun 483:658–663. doi.org/10.1016/j.bbrc.2016.12.087

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Omasa T, Tanaka R, Doi T et al (2008) Decrease in antithrombin III fucosylation by expressing GDP-fucose transporter siRNA in Chinese hamster ovary cells. J Biosci Bioeng 106:168–173. doi.org/10.1263/jbb.106.168

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Park S, Pastuszak I, Mengeling BJ et al (1997) Synthesis and utilization of GDP-D-arabinopyranoside. Anal Biochem 244:321–327. doi.org/10.1006/abio.1996.9906

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Runkel L, Meier W, Pepinsky RB et al (1998) Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res 15:641–649. doi.org/10.1023/A:1011974512425

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sasaki T, Setthapramote C, Kurosu T et al (2013) Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antivir Res 98(3):423–431. doi.org/10.1016/j.antiviral.2013.03.018

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740. doi.org/10.1074/jbc.M202069200

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473. doi.org/10.1074/ibc.M210665200

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Walsh G (2018) Biopharmaceutical benchmarks. Nat Biotechnol 36:1136–1145. doi.org/10.1038/nbt.4305

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252. doi.org/10.1038/nbt1252

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wiese TJ, Dunlap JA, Yorek MA (1994) L-fucose is accumulated via a specific transport system in eukaryotic cells. J Biol Chem 269:22705–22711. doi.org/10.1016/S0021-9258(17)31703-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wiese TJ, Dunlap JA, Yorek MA (1997) Effect of L-fucose and D-glucose concentration on L-fucoprotein metabolism in human Hep G2 cells and changes in fucosyltransferase and alpha-L-fucosidase activity in liver of diabetic rats. Biochim Biophys Acta 1335:61–72. doi.org/10.1016/S0304-4165(96)00123-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622. doi.org/10.1002/bit.20151

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang P, Haryadi R, Chan KF et al (2012) Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese hamster ovary mutant. Glycobiology 22:897–911. doi.org/10.1093/glycob/cws064

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Read more here: Source link