Valine feeding reduces ammonia production through rearrangement of metabolic fluxes in central carbon metabolism of CHO cells

  • Aghamohseni H, Ohadi K, Spearman M, Krahn N, Moo-Young M, Scharer JM, Butler M, Budman HM (2014) Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J Biotechnol 186:98–109. doi.org/10.1016/j.jbiotec.2014.05.024

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Altamirano C, Illanes A, Casablancas A, Gámez X, Cairó JJ, Gòdia C (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17(6):1032–1041. doi.org/10.1021/bp0100981

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bulté DB, Palomares LA, Parra CG, Martínez JA, Contreras MA, Noriega LG, Ramírez OT (2020) Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells. Biotechnol Bioeng 117(9):2633–2647. doi.org/10.1002/bit.27439

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discovery Today 12(7):319–326. doi.org/10.1016/j.drudis.2007.02.010

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, KiatHeng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89(2):164–177. doi.org/10.1002/bit.20317

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286. doi.org/10.1016/j.jbiotec.2005.02.003

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chitwood DG, Wang Q, Elliott K, Bullock A, Jordana D, Li Z, Wu C, Harcum SW, Saski CA (2021) Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnol 21(1):4. doi.org/10.1186/s12896-020-00667-2

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dam G, Aamann L, Vistrup H, Gluud LL (2018) The role of branched chain amino acids in the treatment of hepatic encephalopathy. J Clin Exp Hepatol 8(4):448–451. doi.org/10.1016/j.jceh.2018.06.004

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean J, Reddy P (2013) Metabolic analysis of antibody producing CHO cells in fed-batch production. Biotechnol Bioeng 110(6):1735–1747. doi.org/10.1002/bit.24826

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Duarte TM, Carinhas N, Barreiro LC, Carrondo MJT, Alves PM, Teixeira AP (2014) Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng 111(10):2095–2106. doi.org/10.1002/bit.25266

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fan Y, Jimenez Del Val I, Müller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR (2015) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112(3):521–535. doi.org/10.1002/bit.25450

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73(1):84–89. doi.org/10.1182/blood.V73.1.84.84

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68(6):637–646. doi.org/10.1002/(SICI)1097-0290(20000620)68:6%3c637::AID-BIT6%3e3.0.CO;2-C

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Geoghegan D, Arnall C, Hatton D, Noble-Longster J, Sellick C, Senussi T, James DC (2018) Control of amino acid transport into Chinese hamster ovary cells. Biotechnol Bioeng 115(12):2908–2929. doi.org/10.1002/bit.26794

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ghafuri-Esfahani A, Shokri R, Sharifi A, Shafiee L, Khosravi R, Kaghazian H, Khalili M (2020) Optimization of parameters affecting on CHO cell culture producing recombinant erythropoietin. Prep Biochem Biotechnol 50(8):834–841. doi.org/10.1080/10826068.2020.1753072

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ha TK, Lee GM (2014) Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. J Biotechnol 180:23–29. doi.org/10.1016/j.jbiotec.2014.04.002

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hansen HA, Emborg C (1994) Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture. Biotechnol Prog 10(1):121–124. doi.org/10.1021/bp00025a014

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hartley F, Walker T, Chung V, Morten K (2018) Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnol Bioeng 115(8):1890–1903. doi.org/10.1002/bit.26603

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hayashi M, Ohnishi H, Kawade Y, Muto Y, Takahashi Y (1981) Augmented utilization of branched-chain amino acids by skeletal muscle in decompensated liver cirrhosis in special relation to ammonia detoxication. Gastroenterol Jpn 16(1):64–70. doi.org/10.1007/BF02820426

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jiménez NE, Zielinski DC, Quek L-E, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N, Lee D-Y, Lewis NE (2016) A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Syst 3(5):434-443.e8. doi.org/10.1016/j.cels.2016.10.020

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdóttir S, Ng CY, Preciat G, Žagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel LV, Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A, Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP, Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA, Aragón Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BØ, Thiele I, Fleming RMT (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14(3):639–702. doi.org/10.1038/s41596-018-0098-2

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hennicke J, Reinhart D, Altmann F, Kunert R (2019) Impact of temperature and pH on recombinant human IgM quality attributes and productivity. New Biotechnol 50:20–26. doi.org/10.1016/j.nbt.2019.01.001

    CAS 
    Article 

    Google Scholar
     

  • Hiller GW, Clark DS, Blanch HW (1994) Transient responses of hybridoma cells in continuous culture to step changes in amino acid and vitamin concentrations. Biotechnol Bioeng 44(3):303–321. doi.org/10.1002/bit.260440308

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Holecek M (2015) Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy. Nutrition 31(1):14–20. doi.org/10.1016/j.nut.2014.03.016

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hong JK, Cho SM, Yoon SK (2010) Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl Microbiol Biotechnol 88(4):869–876. doi.org/10.1007/s00253-010-2790-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Horvat J, Narat M, Spadiut O (2020) The effect of amino acid supplementation in an industrial Chinese Hamster Ovary process. Biotechnol Prog 36(5):e3001. doi.org/10.1002/btpr.3001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Huang Z, Xu J, Yongky A, Morris CS, Polanco AL, Reily M, Borys MC, Li ZJ, Yoon S (2020) CHO cell productivity improvement by genome-scale modeling and pathway analysis: Application to feed supplements. Biochem Eng J 160:107638. doi.org/10.1016/j.bej.2020.107638

    CAS 
    Article 

    Google Scholar
     

  • Huang Z, Yoon S (2020) Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model. Biochem Eng J 159:107624. doi.org/10.1016/j.bej.2020.107624

    CAS 
    Article 

    Google Scholar
     

  • Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC (2019) Challenging the workhorse: comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 116(6):1449–1462. doi.org/10.1002/bit.26951

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30. doi.org/10.1093/nar/28.1.27

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kastelic M, Kopač D, Novak U, Likozar B (2019) Dynamic metabolic network modeling of mammalian Chinese hamster ovary (CHO) cell cultures with continuous phase kinetics transitions. Biochem Eng J 142:124–134. doi.org/10.1016/j.bej.2018.11.015

    CAS 
    Article 

    Google Scholar
     

  • Kim DY, Chaudhry MA, Kennard ML, Jardon MA, Braasch K, Dionne B, Butler M, Piret JM (2013) Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Biotechnol Prog 29(1):165–175. doi.org/10.1002/btpr.1658

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kishishita S, Katayama S, Kodaira K, Takagi Y, Matsuda H, Okamoto H, Takuma S, Hirashima C, Aoyagi H (2015) Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J Biosci Bioeng 120(1):78–84. doi.org/10.1016/j.jbiosc.2014.11.022

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kochanowski N, Blanchard F, Cacan R, Chirat F, Guedon E, Marc A, Goergen JL (2008) Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-γ glycosylation during batch and fed-batch cultures of CHO cells. Biotechnol Bioeng 100(4):721–733. doi.org/10.1002/bit.21816

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lalonde M-E, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251:128–140. doi.org/10.1016/j.jbiotec.2017.04.028

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lao M-S, Toth D (1997) Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog 13(5):688–691. doi.org/10.1021/bp9602360

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590(14):3349–3360. doi.org/10.1113/jphysiol.2012.230185

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le H, Kabbur S, Pollastrini L, Sun Z, Mills K, Johnson K, Karypis G, Hu W-S (2012) Multivariate analysis of cell culture bioprocess data—Lactate consumption as process indicator. J Biotechnol 162(2):210–223. doi.org/10.1016/j.jbiotec.2012.08.021

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ley D, Pereira S, Pedersen LE, Arnsdorf J, Hefzi H, Davy AM, Ha TK, Wulff T, Kildegaard HF, Andersen MR (2019) Reprogramming AA catabolism in CHO cells with CRISPR/Cas9 genome editing improves cell growth and reduces byproduct secretion. Metab Eng 56:120–129. doi.org/10.1016/j.ymben.2019.09.005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Long C, Zeng X, Xie J, Liang Y, Tao J, Tao Q, Liu M, Cui J, Huang Z, Zeng B (2019) High-level production of Monascus pigments in Monascus ruber CICC41233 through ATP-citrate lyase overexpression. Biochem Eng J 146:160–169. doi.org/10.1016/j.bej.2019.03.007

    CAS 
    Article 

    Google Scholar
     

  • Martinelle K, Häggström L (1993) Mechanisms of ammonia and ammonium ion toxicity in animal cells: transport across cell membranes. J Biotechnol 30(3):339–350. doi.org/10.1016/0168-1656(93)90148-G

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Martínez VS, Dietmair S, Quek L-E, Hodson MP, Gray P, Nielsen LK (2013) Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol Bioeng 110(2):660–666. doi.org/10.1002/bit.24728

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mattick JSA, Kamisoglu K, Ierapetritou MG, Androulakis IP, Berthiaume F (2013) Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness. Willey Interdiscip Rev Syst Biol Med 5(4):449–460. doi.org/10.1002/wsbm.1219

    CAS 
    Article 

    Google Scholar
     

  • McAtee Pereira AG, Walther JL, Hollenbach M, Young JD (2018) 13C Flux analysis reveals that rebalancing medium amino acid composition can reduce ammonia production while preserving central carbon metabolism of CHO cell cultures. Biotechnol J 13(10):1700518. doi.org/10.1002/biot.201700518

    CAS 
    Article 

    Google Scholar
     

  • Morimoto K, Tsuda E, Said AA, Uchida E, Hatakeyama S, Ueda M, Hayakawa T (1996) Biological and physicochemical characterization of recombinant human erythropoietins fractionated by Mono Q column chromatography and their modification with sialyltransferase. Glycoconj J 13(6):1013–1020. doi.org/10.1007/BF01053197

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Motamedian E, Naeimpoor F (2018) LAMOS: A linear algorithm to identify the origin of multiple optimal flux distributions in metabolic networks. Comput Chem Eng 117:372–377. doi.org/10.1016/j.compchemeng.2018.06.014

    CAS 
    Article 

    Google Scholar
     

  • Narkewicz MR, Sauls SD, Tjoa SS, Teng C, Fennessey PV (1996) Evidence for intracellular partitioning of serine and glycine metabolism in Chinese hamster ovary cells. Biochem J 313(3):991–996. doi.org/10.1042/bj3130991

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, Rabinowitz JD, Arany Z (2019) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab 29(2):417-429.e4. doi.org/10.1016/j.cmet.2018.10.013

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Park H-S, Kim I-H, Kim I-Y, Kim K-H, Kim H-J (2000) Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media. J Biotechnol 81(2):129–140. doi.org/10.1016/S0168-1656(00)00282-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pereira S, Kildegaard HF, Andersen MR (2018) Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol J 13(3):1700499. doi.org/10.1002/biot.201700499

    CAS 
    Article 

    Google Scholar
     

  • Reimonn TM, Park S-Y, Agarabi CD, Brorson KA, Yoon S (2016) Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures—Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis. Biotechnol Prog 32(5):1163–1173. doi.org/10.1002/btpr.2335

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Savizi ISP, Motamedian E, Lewis NE, Jimenez del Val I, Shojaosadati SA (2021) An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells. Biotechnol J n/a(n/a):2100019. doi.org/10.1002/biot.202100019

  • Savizi ISP, Soudi T, Shojaosadati SA (2019) Systems biology approach in the formulation of chemically defined media for recombinant protein overproduction. Appl Microbiol Biotechnol 103(20):8315–8326. doi.org/10.1007/s00253-019-10048-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schmidt C, Seibel R, Wehsling M, Le Mignon M, Wille G, Fischer M, Zimmer A (2020) Keto leucine and keto isoleucine are bioavailable precursors of their respective amino acids in cell culture media. J Biotechnol 321:1–12. doi.org/10.1016/j.jbiotec.2020.06.013

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schneider M, Marison IW, von Stockar U (1996) The importance of ammonia in mammalian cell culture. J Biotechnol 46(3):161–185. doi.org/10.1016/0168-1656(95)00196-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sellick CA, Croxford AS, Maqsood AR, Stephens GM, Westerhoff HV, Goodacre R, Dickson AJ (2015) Metabolite profiling of CHO cells: molecular reflections of bioprocessing effectiveness. Biotechnol J 10(9):1434–1445. doi.org/10.1002/biot.201400664

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Seth G, Hossler P, Yee JC, Hu W-S (2006) Engineering cells for cell culture bioprocessing – physiological fundamentals. In: Hu W-S (ed) Cell Culture Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 119–164

    Chapter 

    Google Scholar
     

  • Sheikholeslami Z, Jolicoeur M, Henry O (2014) Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells. Biotechnol Prog 30(3):535–546. doi.org/10.1002/btpr.1907

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Synoground BF, McGraw CE, Elliott KS, Leuze C, Roth JR, Harcum SW, Sandoval NR (2021) Transient ammonia stress on Chinese hamster ovary (CHO) cells yield alterations to alanine metabolism and IgG glycosylation profiles. Biotechnol J n/a(n/a):2100098. doi.org/10.1002/biot.202100098

  • Templeton N, Dean J, Reddy P, Young JD (2013) Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng 110(7):2013–2024. doi.org/10.1002/bit.24858

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wahrheit J, Nicolae A, Heinzle E (2014) Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells. Appl Microbiol Biotechnol 98(4):1771–1783. doi.org/10.1007/s00253-013-5452-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Walker V, Mills GA (1995) Quantitative methods for amino acid analysis in biological fluids. Ann Clin Biochem 32(1):28–57. doi.org/10.1177/000456329503200103

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–924. doi.org/10.1038/nbt0910-917

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xing Z, Kenty B, Koyrakh I, Borys M, Pan S-H, Li ZJ (2011) Optimizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochem 46(7):1423–1429. doi.org/10.1016/j.procbio.2011.03.014

    CAS 
    Article 

    Google Scholar
     

  • Xu P, Dai X-P, Graf E, Martel R, Russell R (2014) Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines. Biotechnol Prog 30(6):1457–1468. doi.org/10.1002/btpr.1957

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yang M, Butler M (2000a) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16(5):751–759. doi.org/10.1021/bp000090b

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yang M, Butler M (2000b) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68(4):370–380. doi.org/10.1002/(SICI)1097-0290(20000520)68:4%3c370::AID-BIT2%3e3.0.CO;2-K

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0°C. Biotechnol Bioeng 89(3):345–356. doi.org/10.1002/bit.20353

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zagari F, Jordan M, Stettler M, Broly H, Wurm FM (2013) Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. New Biotechnol 30(2):238–245. doi.org/10.1016/j.nbt.2012.05.021

    CAS 
    Article 

    Google Scholar
     

  • Zhang X, Jiang R, Lin H, Xu S (2020) Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures. Biotechnol Prog 36(4):e2975. doi.org/10.1002/btpr.2975

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Read more here: Source link