Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits

  • 1.

    Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    PubMed Central 

    Google Scholar
     

  • 3.

    Visscher, P. M. et al. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).


    Google Scholar
     

  • 9.

    Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Kim-Hellmuth, S. et al. Cell type-specific genetic regulation of gene expression across human tissues. Science 369, eaaz8528 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Dobbyn, A. et al. Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. Am. J. Hum. Genet. 102, 1169–1184 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Hormozdiari, F. et al. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nat. Genet. 50, 1041–1047 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21, 1117–1125 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7612 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Young, A. M. H. et al. A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat. Genet. 53, 861–868 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Jaffe, A. E. et al. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat. Neurosci. 23, 510–519 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    de Paiva Lopes, K. et al. Atlas of genetic effects in human microglia transcriptome across brain regions, aging and disease pathologies. Preprint at www.biorxiv.org/content/10.1101/2020.10.27.356113v1?rss=1 (2020).

  • 29.

    Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 26, 1444–1451 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. Nat. Genet. 51, 1475–1485 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Zaitlen, N., Paşaniuc, B., Gur, T., Ziv, E. & Halperin, E. Leveraging genetic variability across populations for the identification of causal variants. Am. J. Hum. Genet. 86, 23–33 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P. & Zeggini, E. Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet. 24, 1330–1336 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 14, e1007309 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Han, B. et al. A general framework for meta-analyzing dependent studies with overlapping subjects in association mapping. Hum. Mol. Genet. 25, 1857–1866 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

  • 45.

    Wang, J. et al. CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. Nucleic Acids Res. 48, D807–D816 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. Data 5, 180185 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

    PubMed Central 

    Google Scholar
     

  • 55.

    Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

    PubMed Central 

    Google Scholar
     

  • 56.

    Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Najt, P. et al. Impulsivity and bipolar disorder. Eur. Neuropsychopharmacol. 17, 313–320 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Ouzir, M. Impulsivity in schizophrenia: a comprehensive update. Aggress. Violent Behav. 18, 247–254 (2013).


    Google Scholar
     

  • 59.

    Cerimele, J. M. & Katon, W. J. Associations between health risk behaviors and symptoms of schizophrenia and bipolar disorder: a systematic review. Gen. Hosp. Psychiatry 35, 16–22 (2013).

    PubMed 

    Google Scholar
     

  • 60.

    Zhang, X. et al. Negative evidence for a role of APH1B T27I variant in Alzheimer’s disease. Hum. Mol. Genet. 29, 955–966 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Hwang, J.-Y. & Zukin, R. S. REST, a master transcriptional regulator in neurodegenerative disease. Curr. Opin. Neurobiol. 48, 193–200 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet. 51, 675–682 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    van der Wijst, M. et al. The single-cell eQTLGen consortium. eLife 9, e52155 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Mandric, I. et al. Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nat. Commun. 11, 5504 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Sul, J. H., Han, B., Ye, C., Choi, T. & Eskin, E. Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet. 9, e1003491 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).


    Google Scholar
     

  • 70.

    Joo, J. W. J., Hormozdiari, F., Han, B. & Eskin, E. Multiple testing correction in linear mixed models. Genome Biol. 17, 62 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Ishigaki, K. et al. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet. 49, 1120–1125 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Mohammadi, P., Castel, S. E., Brown, A. A. & Lappalainen, T. Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. Genome Res. 27, 1872–1884 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs. Bioinformatics 27, 2304–2305 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Meyer, H. V. & Birney, E. PhenotypeSimulator: a comprehensive framework for simulating multi-trait, multi-locus genotype to phenotype relationships. Bioinformatics 34, 2951–2956 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nat. Commun. 8, 15452 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Glassberg, E. C., Gao, Z., Harpak, A., Lan, X. & Pritchard, J. K. Evidence for weak selective constraint on human gene expression. Genetics 211, 757–772 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Zeng, B. jxzb1988/MMQTL: mmQTL v1.5.0. doi.org/10.5281/zenodo.5771105 (2021).

  • Read more here: Source link