Novel gene rearrangement in the mitochondrial genome of Anastatus fulloi (Hymenoptera Chalcidoidea) and phylogenetic implications for Chalcidoidea

  • 1.

    Osellame, L. D., Blacker, T. S. & Duchen, M. R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 26, 711–723 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Bernt, M., Braband, A., Schierwater, B. & Stadler, P. F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 69, 328–338 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Curole, J. P. & Kocher, T. D. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 14, 394–398 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Shao, R., Dowton, M., Murrell, A. & Barker, S. C. Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Mol. Biol. Evol. 20, 1612–1619 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Cameron, S. L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Lopez-Lopez, A. & Vogler, A. P. The mitogenome phylogeny of Adephaga (Coleoptera). Mol. Phylogenet. Evol. 114, 166–174 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Li, Q. et al. The complete mitochondrial genomes of five important medicinal Ganoderma species: Features, evolution, and phylogeny. Int. J. Biol. Macromol. 139, 397–408 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Shang, Y. et al. Comparative mitogenomic analysis of forensically important sarcophagid flies (Diptera: Sarcophagidae) and implications of species identification. J. Med. Entomol. 56, 392–407 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Riyaz, M., Shah, R. A., Savarimuthu, I. & Kuppusamy, S. Comparative mitochondrial genome analysis of Eudocima salaminia (Cramer, 1777) (Lepidoptera: Noctuoidea), novel gene rearrangement and phylogenetic relationship within the superfamily Noctuoidea. Mol. Biol. Rep. 48, 4449–4463 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Ye, F., Li, H. & Xie, Q. Mitochondrial genomes from two specialized subfamilies of Reduviidae (Insecta: Hemiptera) reveal novel gene rearrangements of true Bugs. Genes 12, 1134 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Wang, X., Wang, J. & Dai, R. Structural features of the mitogenome of the leafhopper genus Cladolidia (Hemiptera: Cicadellidae: Coelidiinae) and phylogenetic implications in Cicadellidae. Ecol. Evol. 11, 12554–12566 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Tyagi, K. et al. Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci. Rep. 10, 695 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Dai, L. S. et al. Mitochondrial genome of Diaphania indica (Saunders) (Lepidoptera: Pyraloidea) and implications for its phylogeny. Int. J. Biol. Macromol. 108, 981–989 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Kumar, V. et al. The first complete mitochondrial genome of marigold pest thrips, Neohydatothrips samayunkur (Sericothripinae) and comparative analysis. Sci. Rep. 9, 191 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Du, Y., Zhang, C., Dietrich, C. H., Zhang, Y. & Dai, W. Characterization of the complete mitochondrial genomes of Maiestas dorsalis and Japananus hyalinus (Hemiptera: Cicadellidae) and comparison with other Membracoidea. Sci. Rep. 7, 14197 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Chen, L. et al. Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae). Sci. Rep. 8, 7034 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Wei, S., Tang, P., Zheng, L., Shi, M. & Chen, X. The complete mitochondrial genome of Evania appendigaster (Hymenoptera: Evaniidae) has low A + T content and a long intergenic spacer between atp8 and atp6. Mol. Biol. Rep. 37, 1931–1942 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Zhu, J. C. et al. The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications. Int. J. Biol. Macromol. 118, 386–396 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Powell, C., Caleca, V., Rhode, C., Teixeira, D. C. L. & van Asch, B. New mitochondrial gene rearrangement in Psyttalia concolor, P. humilis and P. lounsburyi (Hymenoptera: Braconidae), three parasitoid species of economic interest. Insects 11, 854 (2020).

    PubMed Central 

    Google Scholar
     

  • 21.

    Stahl, J. M., Babendreier, D. & Haye, T. Life history of Anastatus bifasciatus, a potential biological control agent of the brown marmorated stink bug in Europe. Biol. Control 129, 178–186 (2019).


    Google Scholar
     

  • 22.

    Yong-Ming, C. et al. Performances of six eupelmid egg parasitoids from China on Japanese giant silkworm Caligula japonica with different host age regimes. J. Pest Sci. 94, 309 (2020).


    Google Scholar
     

  • 23.

    Peng, L., Gibson, G., Tang, L. U. & Xiang, J. Review of the species of Anastatus (Hymenoptera: Eupelmidae) known from China, with description of two new species with brachypterous females. Zootaxa 4767, 4763–4767 (2020).


    Google Scholar
     

  • 24.

    Peng, L. F. & Lin, N. Q. Recent advances in Eupelmidae (Hymenoptera: Chalcidoidea) systematics. Fujian J. Agric. Sci. 27, 1269–1273 (2012).


    Google Scholar
     

  • 25.

    Fusu, L., Ebrahimi, E., Siebold, C. & Villemant, C. Revision of the Eupelmidae Walker, 1833 described by Jean Risbec. Part 1: The slide mounted specimens housed at the Muséum national d’Histoire naturelle in Paris. Zoosystema 37, 457–480 (2015).


    Google Scholar
     

  • 26.

    Feng, Z. et al. Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). Int. J. Biol. Macromol. 164, 540–547 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Wu, Y. et al. Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). Int. J. Biol. Macromol. 149, 1207–1212 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Coil, D., Jospin, G. & Darling, A. E. A5-Miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31, 587–589 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Bernt, M. et al. CREx: Inferring genomic rearrangements based on common intervals. Bioinformatics 23, 2957–2958 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Zhang, D. et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355 (2020).

    PubMed 

    Google Scholar
     

  • 34.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Ranwez, V., Douzery, E., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582–2584 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Dowton, M., Cameron, S. L., Austin, A. D. & Whiting, M. F. Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera—A lineage with both rapidly and slowly evolving mitochondrial genomes. Mol. Phylogenet. Evol. 52, 512–519 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Korkmaz, E. M., Aydemir, H. B., Temel, B., Budak, M. & Başıbüyük, H. H. Mitogenome evolution in Cephini (Hymenoptera: Cephidae): Evidence for parallel adaptive evolution. Biochem. Syst. Ecol. 71, 137–146 (2017).

    CAS 

    Google Scholar
     

  • 40.

    Wei, S. J., Li, Q., van Achterberg, K. & Chen, X. X. Two mitochondrial genomes from the families Bethylidae and Mutillidae: Independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Mol. Phylogenet. Evol. 77, 1–10 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Shen, Z. C., Chen, L., Chen, L. & Li, Y. X. Information from the mitochondrial genomes of two egg parasitoids, Gonatocerus sp. and Telenomus sp., reveals a controversial phylogenetic relationship between Mymaridae and Scelionidae. Genomics 111, 1059–1065 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Yang, J., Liu, H. X., Li, Y. X. & Wei, Z. M. The rearranged mitochondrial genome of Podagrion sp. (Hymenoptera: Torymidae), a parasitoid wasp of mantis. Genomics 111, 436–440 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Xing, Z. P. et al. Complete mitochondrial genome of a parasitoid, Trichogramma chilonis (Hymenoptera: Chalcidoidea: Trichogrammatidae) and phylogenetic analysis. Mitochondrial DNA B Resour. 6, 2466–2467 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Xiao, J. H., Jia, J. G., Murphy, R. W. & Huang, D. W. Rapid evolution of the mitochondrial genome in Chalcidoid wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PLoS ONE 6, e26645 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Wei, S. J., Shi, M., He, J. H., Sharkey, M. & Chen, X. X. The complete mitochondrial genome of Diadegma semiclausum (Hymenoptera: Ichneumonidae) indicates extensive independent evolutionary events. Genome 52, 308–319 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Zhang, Q. H., Huang, P., Chen, B. & Li, T. J. The complete mitochondrial genome of Orancistrocerus aterrimus aterrimus and comparative analysis in the family Vespidae (Hymenoptera, Vespidae, Eumeninae). ZooKeys 790, 127–144 (2018).


    Google Scholar
     

  • 47.

    Campbell, N. J. & Barker, S. C. The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: Fivefold tandem repetition of a coding region. Mol. Biol. Evol. 16, 732–740 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Stewart, J. B. & Beckenbach, A. T. Insect mitochondrial genomics: The complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome 48, 46–54 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Negrisolo, E., Babbucci, M. & Patarnello, T. The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid Insects. BMC Genomics 12, 221 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Wu, Q. L. et al. The complete mitochondrial genome of Taeniogonalos taihorina (Bischoff) (Hymenoptera: Trigonalyidae) reveals a novel gene rearrangement pattern in the Hymenoptera. Gene 543, 76–84 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Francino, M. P. & Ochman, H. Strand asymmetries in DNA evolution. Trends Genet. 13, 240–245 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Hassanin, A., Leger, N. & Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst. Biol. 54, 277–298 (2005).

    PubMed 

    Google Scholar
     

  • 53.

    Chai, H. N. & Du, Y. Z. The complete mitochondrial genome of the pink stem borer, Sesamia inferens, in comparison with four other Noctuid moths. Int. J. Mol. Sci. 13, 10236–10256 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Ma, Z. et al. Comparative mitogenomics of the genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) revealed conserved gene rearrangement and high sequence variations. Int. J. Mol. Sci. 16, 25031–25049 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Yi, J., Que, S., Xin, T., Xia, B. & Zou, Z. Complete mitochondrial genome of Thitarodes pui (Lepidoptera: Hepialidae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 109–110 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Li, J. et al. Mitochondrial genome characteristics of two Sphingidae insects (Psilogramma increta and Macroglossum stellatarum) and implications for their phylogeny. Int. J. Biol. Macromol. 113, 592–600 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Wang, W. et al. Characterization of the complete mitochondrial genomes of two species of the genus Aphaena Guerin-Meneville (Hemiptera: Fulgoridae) and its phylogenetic implications. Int. J. Biol. Macromol. 141, 29–40 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Wang, J. J., Yang, M. F., Dai, R. H., Li, H. & Wang, X. Y. Characterization and phylogenetic implications of the complete mitochondrial genome of Idiocerinae (Hemiptera: Cicadellidae). Int. J. Biol. Macromol. 120, 2366–2372 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Huang, Y. et al. Comparative mitochondrial genome analysis of Grammodes geometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny. Int. J. Biol. Macromol. 125, 1257–1265 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Sun, Z. et al. Mitochondrial genome of Phalantus geniculatus (Hemiptera: Reduviidae): trnT duplication and phylogenetic implications. Int. J. Biol. Macromol. 129, 110–115 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Shao, L. L. et al. Complete mitochondrial genome sequence of Cheirotonus jansoni (Coleoptera: Scarabaeidae). Genet. Mol. Res. 13, 1047–1058 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Wu, Y. Y., Cao, Y. Y., Fang, J. & Wan, X. The first complete mitochondrial genome of stag beetle from China, Prosopocoilus gracilis (Coleoptera, Lucanidae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 2633–2634 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 (1981).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Juhling, F. et al. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 40, 2833–2845 (2012).

    PubMed 

    Google Scholar
     

  • 66.

    Aydemir, M. N. & Korkmaz, E. M. Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int. J. Biol. Macromol. 144, 460–472 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Taanman, J. W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta. 1410, 103–123 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Cameron, S. L. et al. Mitochondrial genome organization and phylogeny of two vespid wasps. Genome 51, 800–808 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Zhang, D. & Hewitt, G. M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 25, 99–120 (1997).


    Google Scholar
     

  • 70.

    Yan, Z. et al. Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum: A comparative analysis in Chalcidoidea. Int. J. Biol. Macromol. 121, 572–579 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Hu, M., Jex, A. R., Campbell, B. E. & Gasser, R. B. Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nat. Protoc. 2, 2339–2344 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Mao, M., Valerio, A., Austin, A. D., Dowton, M. & Johnson, N. F. The first mitochondrial genome for the wasp superfamily Platygastroidea: The egg parasitoid Trissolcus basalis. Genome 55, 194–204 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Oliveira, D. S., Gomes, T. M. & Loreto, E. L. The rearranged mitochondrial genome of Leptopilina boulardi (Hymenoptera: Figitidae), a parasitoid wasp of Drosophila. Genet. Mol. Biol. 39, 611–615 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Dowton, M., Cameron, S. L., Dowavic, J. I., Austin, A. D. & Whiting, M. F. Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol. Biol. Evol. 26, 1607 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Lin, Z. J. et al. Comparative analysis reveals the expansion of mitochondrial DNA control region containing unusually high G-C tandem repeat arrays in Nasonia vitripennis. Int. J. Biol. Macromol. 166, 1246–1257 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Tang, X. et al. The mitochondrial genome of a parasitic wasp, Chouioia cunea Yang (Hymenoptera: Chalcidoidea: Eulophidae) and phylogenetic analysis. Mitochondrial DNA B Resour. 6, 872–874 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Nedoluzhko, A. V. et al. Mitochondrial genome of Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae).. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 4526–4527 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinform. 11, 43–48 (2015).

    CAS 

    Google Scholar
     

  • 79.

    LaSalle, J. New world Tanaostigmatidae (Hymenoptera, Chalcidoidea). Contrib. Am. Entomol. Inst. 23, 1–181 (1987).


    Google Scholar
     

  • 80.

    Munro, J. B. et al. A molecular phylogeny of the Chalcidoidea (Hymenoptera). PLoS ONE 6, e27023 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Gary, A. P. G. Phylogeny and classification of Eupelmidae, with a revision of the world genera of Calosotinae and Metapelmatinae (Hymenoptera: Chalcidoidea). Mem. Entomol. Soc. Can. 121, 3–121 (1989).


    Google Scholar
     

  • 82.

    Gibson, G. A. Description of Leptoomus janzeni, N. Gen. and N. sp. (Hymenoptera: Chalcidoidea) from Baltic amber, and discussion of its relationships and classification relative to Eupelmidae, Tanaostigmatidae and Encyrtidae. Zootaxa 1730, 1–26 (2008).


    Google Scholar
     

  • Read more here: Source link