Probing the microscopic structure and flexibility of oxidized DNA by molecular simulations

  • A R Poetsch, Comput. Struct. Biotechnol. J 18 207 (2020)


    Google Scholar
     

  • S Steenken, and S V Jovanovic, J. Am. Chem. Soc. 119 617 (1997).


    Google Scholar
     

  • P Diamantis, I Tavernelli, and U Rothlisberger, J. Chem. Theory Comput. 16 6690 (2020).


    Google Scholar
     

  • J M Berg, J L Tymoczko, and L Stryer, Biochemistry. 5th edition (W H Freeman; New York, 2002) Chap. 18

  • M S Cooke, M D Evans, M Dizdaroglu, and J Lunec, FASEB J. 17 1195 (2003).


    Google Scholar
     

  • D M Mutat Res. 275, 331 (1992 Sep).

  • A E Aust, and J F Eveleigh, Proc. Soc. Exp. Biol. Med. 222 246 (1999).


    Google Scholar
     

  • H Kasai, Genes, and Environ 38 (2016).

  • R P Koirala, R Pokhrel, P Baral, P B Tiwari, PP Chapagain, and N P Adhikari, Biol. Chem. 402 1203 (2021)


    Google Scholar
     

  • S Kumar, V Chinnusamy, and T Mohapatra, Front. Genet. 9 640 (2018)


    Google Scholar
     

  • B van Loon, E Markkanen, and U Hübscher, DNA Repair 9 604 (2010)


    Google Scholar
     

  • P Fortini, B Pascucci, E Parlanti, M D’Errico, V Simonelli, and E Dogliotti, Mutation Res./Fund. Molec. Mechan. Mutagen. 531 127 (2003)


    Google Scholar
     

  • V Van Ruyskensvelde, F Van Breusegem, and K Van Der Kelen, Free Radical Biol. Med. 122 181 (2018).


    Google Scholar
     

  • T Pfaffeneder, F Spada, M Wagner, et al. Nat. Chem. Biol. 10 574 (2014).


    Google Scholar
     

  • V Pastukh, J T Roberts, D W Clark, et al. Am J Physiol Lung Cell Mol Physiol. 309 L1367–L1375 (2015).


    Google Scholar
     

  • S Reuter, S C Gupta, M M Chaturvedi, and B B Aggarwal, Free Radical Biol. Med. 49 1603 (2010)


    Google Scholar
     

  • C A Massaad, and E Klann, Antioxid. Redox Signal. 14 2013 (2011)


    Google Scholar
     

  • T F Beckhauser, J Francis-Oliveira, and R D Pasquale, J. Exper. Neurosci. 10s1 JEN.S39887 (2016)

  • T T Ngo, J Yoo, Q Dai, et al. Nat. Commun. 7 10813 (2016)

    ADS 

    Google Scholar
     

  • J Peters, L Mogil, M McCauley, M Williams, and L Maher, Biophys. J. 107 448 (2014)


    Google Scholar
     

  • J P Peters, S P Yelgaonkar, S G Srivatsan, Y Tor, and L James Maher III Nucleic Acids Res. 41 10593 (2013)

  • K Liebl, and M Zacharias Nucleic Acids Res. 47 1132 (2018)


    Google Scholar
     

  • J H. Miller, C C P Fan-Chiang, T P Straatsma, and M A Kennedy J. Am. Chem. Soc. 125 6331 (2003)


    Google Scholar
     

  • M Kara, and M Zacharias Biophys. J .104 1089 (2013)


    Google Scholar
     

  • T Dršata, M Kara, M Zacharias, and F Lankaš J. Phys. Chem. B. 117 11617 (2013)


    Google Scholar
     

  • X Cheng, C Kelso, V Hornak, C de los Santos, A P Grollman, and C Simmerling J. American Chem. Soc. 127 13906 (2005)

  • T J Macke, and D A Case ACS Symposium Series; American Chem. Soci. 682 379 (1997)

  • D Case, I Ben-Shalom, S Brozell, D. Cerutti, T Cheatham III, V Cruzeiro, T Darden, R Duke, D Ghoreishi, M Gilson et al. Amber 2018: San francisco (2018)

  • D A Case et al. Amber 2014: San francisco (2014)

  • P Mark, and L Nilsson J. Phys. Chem. A. 105 9954 (2001)


    Google Scholar
     

  • W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, and M L Klein J. Chem. Phys. 79 926 (1983)

    ADS 

    Google Scholar
     

  • I S Joung, and T E Cheatham J. Phys. Chem. B. 112 9020 (2008)


    Google Scholar
     

  • R L Davidchack, R Handel, and M V Tretyakov J. Chem. Phys. 130 234101 (2009)

    ADS 

    Google Scholar
     

  • W F V. Gunsteren, and H J C. Berendsen Mol. Simul. 1 173 (1988)


    Google Scholar
     

  • H J Berendsen, J Postma, A D W F van Gunsteren, and J Haak J. Chem. Phys. 81 3684 (1984)

    ADS 

    Google Scholar
     

  • P H Hunenberger Adv. Polym. Sci. 173 105 (2005)


    Google Scholar
     

  • J P Ryckaert, G Ciccotti, and H J C Berendsen J. Comput. Phys. 23 327 (1977)

    ADS 

    Google Scholar
     

  • T Darden, D York, and L Pederse J. Chem. Phys. 98 10089 (1993)

    ADS 

    Google Scholar
     

  • S Naskar, and P K Maiti J. Mater. Chem. B 9 5102 (2021)


    Google Scholar
     

  • A Garai, D Ghoshdastidar, S Senapati, and P K Maiti J. Chem. Phys. 149 045104 (2018)

    ADS 

    Google Scholar
     

  • A Garai, S Saurabh, Y Lansac, and P K Maiti J. Phys. Chem. B 119 11146 (2015)


    Google Scholar
     

  • S Naskar, S Saurabh, Y H Jang, Y Lansac, and P K Maiti Soft Matter. 16 634 (2020)

    ADS 

    Google Scholar
     

  • P K. Maiti, T A. Pascal, N Vaidehi, J Heo, and W A Goddard, Biophys. J. 90 1463 (2006)

    ADS 

    Google Scholar
     

  • P K Maiti, T A Pascal, N Vaidehi, and I Goddard, A William Nucleic Acids Res. 32 6047 (2004)


    Google Scholar
     

  • S Mogurampelly, B Nandy, R R Netz, and P K Maiti, European Phys. J. E 36 68 (2013)


    Google Scholar
     

  • A Aggarwal, S Naskar, A K Sahoo, S Mogurampelly, A Garai, and P K Maiti Curr. Opin. Struct. Biol. 64 42 (2020)


    Google Scholar
     

  • S Naskar, M Gosika, H Joshi, and P K Maiti J. Phys. Chem. C 123 9461 (2019)


    Google Scholar
     

  • A K Mazur Phys. Rev. Lett. 98 218102 (2007)

    ADS 

    Google Scholar
     

  • H Joshi, A Kaushik, N C Seeman, and P K Maiti ACS Nano. 10 7780 (2016)


    Google Scholar
     

  • S Naskar, H Joshi, B Chakraborty, N C Seeman, and P K Maiti Nanoscale 11 14863 (2019)


    Google Scholar
     

  • E Skoruppa, M Laleman, S K Nomidis, and E Carlon J. Chem. Phys. 146 214902 (2017)

    ADS 

    Google Scholar
     

  • L. K, D. T, L. F, L. J, and Z. M, Nucleic Acids Res. 43 10143 (2015)

  • J H Liu, K Xi, X Zhang, L Bao, X Zhang, and Z J Tan Biophys. J. 117(1) 74 (2019)

    ADS 

    Google Scholar
     

  • L Bao, X Zhang, Y Z Shi, Y Y Wu, and Z J Tan Biophys. J. 112 1094 (2017)

    ADS 

    Google Scholar
     

  • Z Bryant, M D Stone, J Gore, S B Smith, N R Cozzarelli, and C Bustamante Nature. 424 338 (2003)

    ADS 

    Google Scholar
     

  • S K Nomidis, F Kriegel, W Vanderlinden, J Lipfert, and E Carlon Phys. Rev. Lett. 118 217801 (2017)

    ADS 

    Google Scholar
     

  • F Kriegel, N Ermann, R Forbes, D Dulin, N H Dekker, and J Lipfert Nucleic Acids Res. 45 5920 (2017)


    Google Scholar
     

  • A Marin-Gonzalez, J Vilhena, F Moreno-Herrero, and R Perez Phys. Rev. Lett. 122 048102 (2019)

    ADS 

    Google Scholar
     

  • X J Lu and W K Olson Nucleic Acids Res. 31 5108 (2003)


    Google Scholar
     

  • W Humphrey, A Dalke, and K Schulten J. Mol. Graph. 14 33 (1996)


    Google Scholar
     

  • D R Roe and T E Cheatham J. Chem. Theory Comput. 9 3084 (2013)


    Google Scholar
     

  • J Abels, F Moreno-Herrero, T van der Heijden, C Dekker, and N Dekker, Biophys. J. 88 2737 (2005)


    Google Scholar
     

  • P J Hagerman Annu. Rev. Biophys. Biomol. Struct. 26 139 (1997)


    Google Scholar
     

  • K M Kosikov, A A Gorin, V B Zhurkin, and W K Olson J. Mol. Biol. 289 1301 (1999)


    Google Scholar
     

  • R S Mathew-Fenn, R Das, and P A B Harbury, Science 322 446 (2008)

    ADS 

    Google Scholar
     

  • E Herrero-Galán, M E Fuentes-Perez, C Carrasco, J M Valpuesta, J L Carrascosa, F Moreno-Herrero, and J R Arias-Gonzalez J. Am. Chem. Soc. 135 122 (2013)


    Google Scholar
     

  • J Lipfert, G M. Skinner, J M. Keegstra, T Hensgens, T Jager, D Dulin, M Köber, Z Yu, S P Donkers, F C. Chou, R Das, and N H. Dekker Proc. Natl. Acad. Sci. 111 15408 (2014)

    ADS 

    Google Scholar
     

  • P S Ho and M Carter In DNA Replication, edited by H. Seligmann (IntechOpen, Rijeka, 2011) Chap. 1

  • P K Pingali, S Halder, D Mukherjee, S Basu, R Banerjee, D Choudhury, and D Bhattacharyya J. Comput. Aided Mol. Des. 28 851 (2014)

    ADS 

    Google Scholar
     

  • P S Pallan, P Lubini, M Bolli, and M Egli Nucleic Acids Res. 35 6611 (2007)


    Google Scholar
     

  • A Ghosh and M Bansal Acta Crystallogr. Sect. D 59 620 (2003)


    Google Scholar
     

  • M Trieb, C Rauch, B Wellenzohn, F Wibowo, T Loerting, and K R Liedl, J. Phys. Chem. B 108 2470 (2004)


    Google Scholar
     

  • H Ishida J. Biomol. Struct. Dyn. 19 839 (2002)


    Google Scholar
     

  • L J Maher Structure 14 1479 (2006)


    Google Scholar
     

  • R Padinhateeri and G Menon Biophys. J. 104 463 (2013)

    ADS 

    Google Scholar
     

  • B Heddi, C Oguey, C Lavelle, N Foloppe, and B Hartmann, Nucleic Acids Res. 38 1034 (2009)


    Google Scholar
     

  • S Mukherjee, S Kailasam, M Bansal, and D Bhattacharyya Biopolymers. 103 134 (2015)


    Google Scholar
     

  • R Lavery et al. Nucleic Acids Res. 38 299 (2009)

  • P Várnai, D Djuranovic, R Lavery, and B Hartmann Nucleic Acids Res. 30 5398 (2002)


    Google Scholar
     

  • G F Deleavey and M J Damha Chem. and biol 19 937 (2012)


    Google Scholar
     

  • N Foloppe and A D MacKerell J. Phys. Chem. B 103 10955 (1999)


    Google Scholar
     

  • A Madhumalar and M Bansal J. Biomol. Struct. Dyn. 23 13 (2005)


    Google Scholar
     

  • A Ben Imeddourene, A Elbahnsi, M Guéroult, C Oguey, N Foloppe, and B Hartmann PLoS Comput. Biol.11 1 (2015)


    Google Scholar
     

  • D Svozil, J Kalina, M Omelka, and B Schneider Nucleic Acids Res. 36 3690 (2008)


    Google Scholar
     

  • M Zgarbová, P Jureèka, F Lankaš, T E Cheatham, J Šponer, and M Otyepka J. Chem. Inf. Model. 57 275 (2017)


    Google Scholar
     

  • B Hartmann, D Piazzola, and R Lavery Nucleic Acids Res. 21 561 (1993)


    Google Scholar
     

  • B Heddi, N Foloppe, N Bouchemal, E Hantz, and B Hartmann J. Am. Chem. Soc. 128 9170 (2006)


    Google Scholar
     

  • T Dršata, A Pérez, M Orozco, A V Morozov, J Sponer, and F Lankaš J Chem Theory Comput. 9 707 (2013)


    Google Scholar
     

  • J J Hoppins, et al. PLOS ONE 11 1 (2016)


    Google Scholar
     

  • E Arunan, et al. Pure Appl. Chem. 83 1637 (2011)


    Google Scholar
     

  • Y H Jang, W A Goddard, K T Noyes, L C Sowers, S Hwang, and D S Chung Chem. Res. Toxicol. 15 1023 (2002)


    Google Scholar
     

  • C M Crenshaw, J E Wade, H Arthanari, D Frueh, B F Lane, and M E Núñez Biochemistry 50 8463 (2011)


    Google Scholar
     

  • A Jain, R Krishna Deepak, and R Sankararamakrishnan J. Struct. Biol. 187 49 (2014)

  • Read more here: Source link