Genome-wide association study of musical beat synchronization demonstrates high polygenicity

  • Savage, P. E., Brown, S., Sakai, E. & Currie, T. E. Statistical universals reveal the structures and functions of human music. Proc. Natl Acad. Sci. USA 112, 8987–8992 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ravignani, A., Delgado, T. & Kirby, S. Musical evolution in the lab exhibits rhythmic universals. Nat. Hum. Behav. doi.org/10.1038/s41562-016-0007 (2017).

  • Mehr, S. A. et al. Universality and diversity in human song. Science doi.org/10.1126/science.aax0868 (2019).

  • Kotz, S. A., Ravignani, A. & Fitch, W. T. The evolution of rhythm processing. Trends Cogn. Sci. doi.org/10.1016/j.tics.2018.08.002 (2018).

  • Pouw, W., Paxton, A., Harrison, S. J. & Dixon, J. A. Acoustic information about upper limb movement in voicing. Proc. Natl Acad. Sci. USA doi.org/10.1073/pnas.2004163117 (2020).

  • Large, E. W. & Jones, M. R. The dynamics of attending: how we track time varying events. Psychol. Rev. 106, 119–159 (1999).

    Article 

    Google Scholar
     

  • Nobre, A. C. & Van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. doi.org/10.1038/nrn.2017.141 (2018).

  • Hannon, E. E. & Trehub, S. E. Tuning in to musical rhythms: infants learn more readily than adults. Proc. Natl Acad. Sci. USA doi.org/10.1073/pnas.0504254102 (2005).

  • Winkler, I., Haden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA 106, 2468–2471 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zentner, M. & Eerola, T. Rhythmic engagement with music in infancy. Proc. Natl Acad. Sci. USA 107, 5768–5773 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cirelli, L. K., Trehub, S. E. & Trainor, L. J. Rhythm and melody as social signals for infants. Ann. N. Y. Acad. Sci. 1423, 66–72 (2018).

    Article 

    Google Scholar
     

  • Nazzi, T., Bertoncini, J. & Mehler, J. Language discrimination by newborns: toward an understanding of the role of rhythm. J. Exp. Psychol. Hum. Percept. Perform. 24, 756–766 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Polak, R. et al. Rhythmic prototypes across cultures. Music Percept. doi.org/10.1525/mp.2018.36.1.1 (2018).

  • London, J., Polak, R. & Jacoby, N. Rhythm histograms and musical meter: a corpus study of Malian percussion music. Psychon. Bull. Rev. doi.org/10.3758/s13423-016-1093-7 (2017).

  • Clayton, M., Sager, R. & Will, U. In time with the music: the concept of entrainment and its significance for ethnomusicology. Eur. Meet. Ethnomusicol. 11, 3–142 (2005).


    Google Scholar
     

  • Polak, R. & London, J. Timing and meter in Mande drumming from Mali. Music Theory Online doi.org/10.30535/mto.20.1.1 (2014).

  • Polak, R., London, J. & Jacoby, N. Both isochronous and non-isochronous metrical subdivision afford precise and stable ensemble entrainment: a corpus study of Malian jembe drumming. Front. Neurosci. doi.org/10.3389/fnins.2016.00285 (2016).

  • Patel, A. D. & Iversen, J. R. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front. Syst. Neurosci. 8, 57 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol. doi.org/10.1016/j.cub.2016.12.031 (2017).

  • Cameron, D. J., Bentley, J. & Grahn, J. A. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping. Front. Psychol. doi.org/10.3389/fpsyg.2015.00366 (2015).

  • Neuhoff, H., Polak, R. & Fischinger, T. Perception and evaluation of timing patterns in drum ensemble music from Mali. Music Percept. doi.org/10.1525/MP.2017.34.4.438 (2017).

  • Honing, H. On the biological basis of musicality. Ann. N. Y. Acad. Sci. doi.org/10.1111/nyas.13638 (2018).

  • Tarr, B., Slater, M. & Cohen, E. Synchrony and social connection in immersive virtual reality. Sci. Rep. doi.org/10.1038/s41598-018-21765-4 (2018).

  • Lense, M. D. & Camarata, S. PRESS-Play: musical engagement as a motivating platform for social interaction and social play in young children with ASD. Music Sci. doi.org/10.1177/2059204320933080 (2020).

  • Fitch, W. T. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24, 3–33 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Savage, P. E. et al. Music as a coevolved system for social bonding. Behav. Brain Sci. doi.org/10.1017/S0140525X20000333 (2020).

  • Woodruff Carr, K., White-Schwoch, T., Tierney, A. T., Strait, D. L. & Kraus, N. Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proc. Natl Acad. Sci. USA 111, 14559–14564 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Swaminathan, S. & Schellenberg, E. G. Musical ability, music training, and language ability in childhood. J. Exp. Psychol. Learn. Mem. Cogn. doi.org/10.1037/xlm0000798 (2019).

  • Keller, P. E., Novembre, G. & Hove, M. J. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Phil. Trans. R. Soc. B doi.org/10.1098/rstb.2013.0394 (2014).

  • Ladányi, E., Persici, V., Fiveash, A., Tillmann, B. & Gordon, R. L. Is atypical rhythm a risk factor for developmental speech and language disorders? WIREs Cogn. Sci. e1528 11, e1528 (2020).


    Google Scholar
     

  • Moumdjian, L., Sarkamo, T., Leone, C., Leman, M. & Feys, P. Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review. Eur. J. Phys. Rehabil. Med. doi.org/10.23736/S1973-9087.16.04429-4 (2017).

  • Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M. & Fitch, W. T. Finding the beat: a neural perspective across humans and non-human primates. Phil. Trans. R. Soc. B 370, 20140093 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gordon, C. L., Cobb, P. R. & Balasubramaniam, R. Recruitment of the motor system during music listening: an ALE meta-analysis of fMRI data. PLoS ONE doi.org/10.1371/journal.pone.0207213 (2018).

  • Cannon, J. J. & Patel, A. D. How beat perception co-opts motor neurophysiology. Trends Cogn. Sci. 25, 137–150 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dalla Bella, S. et al. BAASTA: Battery for the Assessment of Auditory Sensorimotor and Timing Abilities. Behav. Res. Methods doi.org/10.3758/s13428-016-0773-6 (2017).

  • Pulli, K. et al. Genome-wide linkage scan for loci of musical aptitude in Finnish families: evidence for a major locus at 4q22. J. Med. Genet. 45, 451–456 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oikkonen, J. et al. A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Mol. Psychiatry 20, 451–456 (2014).


    Google Scholar
     

  • Ullén, F., Mosing, M. A., Holm, L., Eriksson, H. & Madison, G. Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Pers. Individ. Dif. 63, 87–93 (2014).

    Article 

    Google Scholar
     

  • Mosing, M. A., Verweij, K. J. H., Madison, G. & Ullén, F. The genetic architecture of correlations between perceptual timing, motor timing, and intelligence. Intelligence 57, 33–40 (2016).

    Article 

    Google Scholar
     

  • Seesjärvi, E. et al. The nature and nurture of melody: a twin study of musical pitch and rhythm perception. Behav. Genet. doi.org/10.1007/s10519-015-9774-y (2016).

  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J. & Fisher, S. E. Defining the biological bases of individual differences in musicality. Phil. Trans. R. Soc. B 370, 20140092 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk of complex disease. Curr. Opin. Genet. Dev. 18, 257–263 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müllensiefen, D., Gingras, B., Musil, J. & Stewart, L. The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS ONE 9, e89642 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Musil, J. J., Iversen, J. R. & Müllensiefen, D. Measuring individual differences in musical beat alignment perception. Pers. Individ. Dif. 60, S35 (2014).

    Article 

    Google Scholar
     

  • Law, L. N. C. & Zentner, M. Assessing musical abilities objectively: construction and validation of the Profile of Music Perception Skills. PLoS ONE 7, e52508 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Anglada-Tort, M., Harrison, P. M. C. & Jacoby, N. REPP: a robust cross-platform solution for online sensorimotor synchronization experiments. Behav. Res. Methods 1, 1–15 (2022).


    Google Scholar
     

  • Li, M. & Yue, W. VRK2, a candidate gene for psychiatric and neurological disorders. Mol. Neuropsychiatry 4, 119–133 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. doi.org/10.1038/ng.3955 (2017).

  • D’Angelo, D. et al. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry doi.org/10.1001/jamapsychiatry.2015.2123 (2016).

  • Hippolyte, L. et al. The number of genomic copies at the 16p11.2 locus modulates language, verbal memory, and inhibition. Biol. Psychiatry doi.org/10.1016/j.biopsych.2015.10.021 (2016).

  • Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oikkonen, J., Onkamo, P., Järvelä, I. & Kanduri, C. Convergent evidence for the molecular basis of musical traits. Sci. Rep. 6, 39707 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, H. et al. Comprehensive genomic analyses associate UGT8 variants with musical ability in a Mongolian population. J. Med. Genet. 49, 747–752 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leeuw, C. A., de, Stringer, S., Dekkers, I. A., Heskes, T. & Posthuma, D. Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure. Nat. Commun. 9, 3768 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. doi.org/10.1371/journal.pcbi.1004219 (2015).

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • GTEx Consortium The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature doi.org/10.1038/nature10530 (2011).

  • Hujoel, M. L. A., Gazal, S., Hormozdiari, F., van de Geijn, B. & Price, A. L. Disease heritability enrichment of regulatory elements is concentrated in elements with ancient sequence age and conserved function across species. Am. J. Hum. Genet. 104, 611–624 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. doi.org/10.1038/s41588-018-0081-4 (2018).

  • Mithen, S. J. The Singing Neanderthals: The Origins of Music, Language, Mind, and Body (Harvard Univ. Press, 2005).

  • Capra, J. A., Erwin, G. D., McKinsey, G., Rubenstein, J. L. & Pollard, K. S. Many human accelerated regions are developmental enhancers. Phil. Trans. R. Soc. B 368, 20130025 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hubisz, M. J. & Pollard, K. S. Exploring the genesis and functions of human accelerated regions sheds light on their role in human evolution. Curr. Opin. Genet. Dev. 29, 15–21 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167, 341–354e12 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Todd, E. J. et al. Next generation sequencing in a large cohort of patients presenting with neuromuscular disease before or at birth. Orphanet J. Rare Dis. doi.org/10.1186/s13023-015-0364-0 (2015).

  • Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9, 2098 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Akman, H. O., Lossos, A. & Kakhlon, O. GBE1 adult polyglucosan body disease. GeneReviews®; www.ncbi.nlm.nih.gov/books/NBK5300/ (1993).

  • Niarchou, M., Lin, G. T., Lense, M. D., Gordon, R. L. & Davis, L. K. Medical phenome of musicians: an investigation of health records collected on 9803 musically active individuals. Ann. N. Y. Acad. Sci. doi.org/10.1111/NYAS.14671 (2021).

  • Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grotzinger, A. D. et al. Genomic SEM provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. doi.org/10.1038/s41562-019-0566-x (2019).

  • Shrine, N. et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. doi.org/10.1038/s41588-018-0321-7 (2019).

  • Willems, S. M. et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. doi.org/10.1038/ncomms16015 (2017).

  • Finkel, D., Ernsth-Bravell, M. & Pedersen, N. L. Temporal dynamics of motor functioning and cognitive aging. J. Gerontol. A doi.org/10.1093/gerona/glv110 (2015).

  • Bégel, V., Verga, L., Benoit, C. E., Kotz, S. A. & Dalla Bella, S. Test–retest reliability of the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). Ann. Phys. Rehabil. Med. doi.org/10.1016/j.rehab.2018.04.001 (2018).

  • Bonacina, S., Krizman, J., White-Schwoch, T., Nicol, T. & Kraus, N. How rhythmic skills relate and develop in school-age children. Glob. Pediatr. Health doi.org/10.1177/2333794×19852045 (2019).

  • Tranchant, P., Vuvan, D. T. & Peretz, I. Keeping the beat: a large sample study of bouncing and clapping to music. PLoS ONE doi.org/10.1371/journal.pone.0160178 (2016).

  • Tranchant, P. & Peretz, I. Basic timekeeping deficit in the beat-based form of congenital amusia. Sci. Rep. doi.org/10.1038/s41598-020-65034-9 (2020).

  • Coleman, J. R. I. The validity of brief phenotyping in population biobanks for psychiatric genome-wide association studies on the biobank scale. Complex Psychiatry doi.org/10.1159/000516837 (2021).

  • Abdellaoui, A. & Verweij, K. J. H. Dissecting polygenic signals from genome-wide association studies on human behaviour. Nat. Hum. Behav. 5, 686–694 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920–927 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lévy, J. et al. Molecular and clinical delineation of 2p15p16. 1 microdeletion syndrome. Am. J. Med. Genet. A 173, 2081–2087 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. doi.org/10.1038/s41467-018-08259-7 (2019).

  • Grahn, J. A. & Rowe, J. B. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci. 29, 7540–7548 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grahn, J. A. & Rowe, J. B. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb. Cortex 23, 913–921 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Kung, S.-J., Chen, J. L., Zatorre, R. J. & Penhune, V. B. Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. J. Cogn. Neurosci. 25, 401–420 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Bengtsson, S. L. et al. Listening to rhythms activates motor and premotor cortices. Cortex 45, 62–71 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Teki, S., Grube, M., Kumar, S. & Griffiths, T. D. Distinct neural substrates of duration-based and beat-based auditory timing. J. Neurosci. 31, 3805–3812 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McAuley, J. D., Henry, M. J. & Tkach, J. Tempo mediates the involvement of motor areas in beat perception. Ann. N. Y. Acad. Sci. 1252, 77–84 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Dissanayake, E. If music is the food of love, what about survival and reproductive success? Music Sci. 12, 169–195 (2008).

    Article 

    Google Scholar
     

  • Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J. & Rodriguez-Fornells, A. Individual differences in music reward experiences. Music Percept. 31, 118–138 (2013).

    Article 

    Google Scholar
     

  • Tung, J. Y. et al. Efficient replication of over 180 genetic associations with self-reported medical data. PLoS ONE 6, e23473 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haegens, S. & Golumbic, E. Z. Rhythmic facilitation of sensory processing: a critical review. Neurosci. Biobehav. Rev. 86, 150–165 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Sowiński, J. & Dalla Bella, S. Poor synchronization to the beat may result from deficient auditory–motor mapping. Neuropsychologia 51, 1952–1963 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Haworth, S. et al. Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis. Nat. Commun. 10, 333 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jacoby, N. et al. Cross-cultural work in music cognition. Music Percept. doi.org/10.1525/mp.2020.37.3.185 (2020).

  • Gordon, R. L. et al. Confronting ethical and social issues related to the genetics of musicality. Preprint at PsyArXiv doi.org/10.31234/osf.io/dyn6e (2022)

  • Border, R. et al. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am. J. Psychiatry 176, 376–387 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mosing, M. A., Madison, G., Pedersen, N. L. & Ullén, F. Investigating cognitive transfer within the framework of music practice: genetic pleiotropy rather than causality. Dev. Sci. 19, 504–512 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Marees, A. T. et al. Genetic correlates of socio-economic status influence the pattern of shared heritability across mental health traits. Nat. Hum. Behav. doi.org/10.1038/s41562-021-01053-4 (2021).

  • Emery, C. F., Finkel, D. & Pedersen, N. L. Pulmonary function as a cause of cognitive aging. Psychol. Sci. doi.org/10.1177/0956797612439422 (2012).

  • Finkel, D., Ernsth Bravell, M. & Pedersen, N. L. Role of motor function and lung function in pathways to ageing and decline. Aging Clin. Exp. Res. doi.org/10.1007/s40520-020-01494-3 (2020).

  • Duggan, E. C. et al. A multi-study coordinated meta-analysis of pulmonary function and cognition in aging. J. Gerontol. A doi.org/10.1093/gerona/glz057 (2019).

  • Clouston, S. A. P. et al. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol. Rev. doi.org/10.1093/epirev/mxs004 (2013).

  • Larsson, M., Richter, J. & Ravignani, A. Bipedal steps in the development of rhythmic behavior in humans. Music Sci. doi.org/10.1177/2059204319892617 (2019).

  • Provasi, J., Anderson, D. I. & Barbu-Roth, M. Rhythm perception, production, and synchronization during the perinatal period. Front. Psychol. doi.org/10.3389/fpsyg.2014.01048 (2014).

  • Bernard, J. A., Millman, Z. B. & Mittal, V. A. Beat and metaphoric gestures are differentially associated with regional cerebellar and cortical volumes. Hum. Brain Mapp. doi.org/10.1002/hbm.22894 (2015).

  • Gjermunds, N., Brechan, I., Johnsen, S. Å. K. & Watten, R. G. Musicians: larks, owls or hummingbirds? J. Circadian Rhythms 17, 4 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin, J., Taylor, M. J. & Lichtenstein, P. Assessing the evidence for shared genetic risks across psychiatric disorders and traits. Psychol. Med. doi.org/10.1017/S0033291717003440 (2018).

  • Chen, T. J. H. et al. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of ‘super normal controls’ in psychiatricgenetic research of complex behavioral disorders. Med. Hypotheses 65, 703–707 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kendler, K., Chatzinakos, C. & Bacanu, S. The impact on estimations of genetic correlations by the use of super-normal, unscreened, and family-history screened controls in genome wide case-control studies. Genet. Epidemiol. 44, 283–289 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Mansens, D., Deeg, D. J. H. & Comijs, H. C. The association between singing and/or playing a musical instrument and cognitive functions in older adults. Aging Ment. Health doi.org/10.1080/13607863.2017.1328481 (2018).

  • Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P. & Penhune, V. B. The sensation of groove engages motor and reward networks. NeuroImage 214, 116768 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Povel, D.-J. & Essens, P. Perception of temporal patterns. Music Percept. 2, 411–440 (1985).

    Article 

    Google Scholar
     

  • Grahn, J. A. & McAuley, J. D. Neural bases of individual differences in beat perception. NeuroImage 47, 1894–1903 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Gordon, R. L., Jacobs, M. S., Schuele, C. M. & Mcauley, J. D. Perspectives on the rhythm−grammar link and its implications for typical and atypical language development. Ann. N. Y. Acad. Sci.1337, 16–25 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wieland, E. A., McAuley, J. D., Dilley, L. C. & Chang, S.-E. Evidence for a rhythm perception deficit in children who stutter. Brain Lang. 144, 26–34 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Woods, K. J. P., Siegel, M. H., Traer, J. & McDermott, J. H. Headphone screening to facilitate web-based auditory experiments. Atten. Percept. Psychophys. 79, 2064–2072 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Cambridge Univ. Press, 1991).

  • Gordon, R. L. et al. Musical rhythm discrimination explains individual differences in grammar skills in children. Dev. Sci. doi.org/10.1111/desc.12230 (2015).

  • Berinsky, A. J., Margolis, M. F. & Sances, M. W. Separating the shirkers from the workers? Making sure respondents pay attention on self-administered surveys. Am. J. Polit. Sci. doi.org/10.1111/ajps.12081 (2014).

  • Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N. & Evershed, J. K. Realistic precision and accuracy of online experiment platforms, web browsers, and devices. Behav. Res. Methods 53, 1407–1425 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Bridges, D., Pitiot, A., MacAskill, M. R. & Peirce, J. W. The timing mega-study: comparing a range of experiment generators, both lab-based and online. PeerJ doi.org/10.7717/peerj.9414 (2020).

  • McKinney, M. F., Moelants, D., Davies, M. E. P. & Klapuri, A. Evaluation of audio beat tracking and music tempo extraction algorithms. J. N. Music Res. doi.org/10.1080/09298210701653252 (2007).

  • Repp, B. H. Rate limits of on-beat and off-beat tapping with simple auditory rhythms: 1. Qualitative observations. Music Percept. doi.org/10.1525/mp.2005.22.3.479 (2005).

  • Repp, B. H. & Su, Y. H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. doi.org/10.3758/s13423-012-0371-2 (2013).

  • London, J. Hearing in Time: Psychological Aspects of Musical Meter (Oxford Univ. Press, 2012); doi.org/10.1093/acprof:oso/9780199744374.001.0001

  • R Core Team R: A Language and Environment for Statistical Computing v.3.5.1 (R Foundation for Statistical Computing, 2018).

  • Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • The Gene Ontology Consortium The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics doi.org/10.1093/bioinformatics/btq033 (2010).

  • Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Adam, D. The promise and peril of the new science of social genomics. Nature doi.org/10.1038/d41586-019-03171-6 (2019).

  • Wray, N. R. et al. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry doi.org/10.1111/jcpp.12295 (2014).

  • Devaney, J. Eugenics and musical talent: exploring Carl Seashore’s work on talent testing and performance. Am. Music Rev. 48, no. 2 (2019).

  • Turley, P. et al. Problems with using polygenic scores to select embryos. N. Engl. J. Med. 385, 78–86 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Read more here: Source link