Ggplot2’s theme system allows us to better control graphicsNon data elementTo enhance the beauty of the image through more subtle modifications,Theme system of ggplot2Self contained multipleelement_function
- element_text( )
- element_line( )
- element_rect( )
- element_blank( )
This section describes the topic element element_ Text (), which controls many parts of text elements in a drawing, such as font size, color, and font type.
Element of ggplot2_ Text() parsing

element_ List of elements controlled by text()
- axis. title. x: Custom X-axis label / Title
- axis. title. Y: Custom Y-axis label / Title
- axis. text. X: Custom X-axis scale labels
- axis. text. Y: Custom Y-axis scale labels
- legend. Title: custom legend title text
- legend. Text: Custom legend text
- plot. Title: custom image main title
- plot. Subtitle: custom image subtitle
- plot. Caption: custom image footnotes
- plot. Tag: custom drawing labels
Load R package
library(tidyverse)
library(palmerpenguins)
Still use the penguin data set. Next, use element_ Text() function to adjust the text element of the image
p<- penguins %>%
drop_na() %>%
ggplot(aes(x=flipper_length_mm,
y=bill_length_mm,
color=species,
shape=sex))+
geom_point()+
labs(title="Palmer Penguins",
subtitle="Flipper Length vs Bill Length",
caption="cmdlinetips.com",
tag = 'A'
)
p

1. axis. title.* (): Customx&y
Label text
Through element_ Text() to change the text, color, size and angle
p + theme(axis.title.x = element_text(size=16, color="purple",
face="bold",angle=0),
axis.title.y = element_text(size=16, color="purple",
face="bold",angle=90))

2. axis. text.* () customx&y
Scale text
p + theme(axis.text.x=element_text(family = "Tahoma",face="bold",
colour="black",size=10),
axis.text.y = element_text(family = "Tahoma",face="bold",
colour="black",size=10))

3. legend. Title() custom legend title text
p + theme(legend.title=element_text(color="purple",
face="bold",size=12))

4. legend. Text() custom legend text
p + theme(legend.text=element_text(face="bold", color="red",size=10))

5. plot. Title() custom main title
p + theme(plot.title= element_text(size=15,color="blue",hjust = 0.5,
face="bold",family = "Tahoma"))

6. plot. Subtitle() custom subtitle
p + theme(plot.subtitle= element_text(size=13,
color="red",
face="bold"))

7. plot. Caption() custom footnote
p + theme(plot.caption= element_text(size=12,
color="blue",
face="bold"))

8. plot. Tag() custom label
p + theme(plot.tag = element_text(size=16,
color="red",
face="bold"))

Welcome to my official account
The R language data analysis guide continuously shares the classic cases of data visualization and some students’ knowledge, hoping to help you
Read more here: Source link