Evolution of stickleback spines through independent cis-regulatory changes at HOXDB

  • Darwin, C. On the Origin of Species by Means of Natural Selection (John Murray, 1859).

  • Owen, R. On the Archetype and Homologies of the Vertebrate Skeleton (Richard and John E. Taylor, 1848).

  • Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stern, D. L. & Orgogozo, V. The loci of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bender, W. et al. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 23–29 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scott, M. P. & Weiner, A. J. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl Acad. Sci. USA 81, 4115–4119 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harding, K., Wedeen, C., McGinnis, W. & Levine, M. Spatially regulated expression of homeotic genes in Drosophila. Science 229, 1236–1242 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Izpisúa-Belmonte, J. C., Falkenstein, H., Dollé, P., Renucci, A. & Duboule, D. Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body. EMBO J. 10, 2279–2289 (1991).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell, 2005).

  • Warren, R. W., Nagy, L., Selegue, J., Gates, J. & Carroll, S. Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372, 458–461 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carroll, S. B., Weatherbee, S. D. & Langeland, J. A. Homeotic genes and the regulation and evolution of insect wing number. Nature 375, 58–61 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goldschmidt, R. The Material Basis of Evolution (Yale Univ. Press, 1940).

  • Averof, M. & Patel, N. H. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carroll, S. B. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Changes throughout a genetic network mask the contribution of Hox gene evolution. Curr. Biol. 29, 2157–2166.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mayr, E. Populations, Species, and Evolution: an Abridgment of Animal Species and Evolution (Belknap Press, 1970).

  • Wells, J. Icons of Evolution: Science or Myth (Regnery Publishing, 2000).

  • Stern, D. L. A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396, 463–466 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tian, L. et al. A homeotic shift late in development drives mimetic color variation in a bumble bee. Proc. Natl Acad. Sci. USA 116, 11857–11865 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shashikant, C. S., Kim, C. B., Borbély, M. A., Wang, W. C. & Ruddle, F. H. Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element. Proc. Natl Acad. Sci. USA 95, 15446–15451 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosen, D. E. in Interrelationships of Fishes (eds Greenwood, P. H. et al.) 397–513 (Academic Press, 1973).

  • Wainwright, P. C. & Longo, S. J. Functional innovations and the conquest of the oceans by acanthomorph fishes. Curr. Biol. 27, R550–R557 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mabee, P. M., Crotwell, P. L., Bird, N. C. & Burke, A. C. Evolution of median fin modules in the axial skeleton of fishes. J. Exp. Zool. 294, 77–90 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Höch, R., Schneider, R. F., Kickuth, A., Meyer, A. & Woltering, J. M. Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP-gremlin-shh signaling network. Proc. Natl Acad. Sci. USA 118, e2101783118 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Roberts Kingman, G. A. et al. Longer or shorter spines: reciprocal trait evolution in stickleback via triallelic regulatory changes in Stanniocalcin2a. Proc. Natl Acad. Sci. USA 118, e2100694118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Howes, T. R., Summers, B. R. & Kingsley, D. M. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A. BMC Biol. 15, 115 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mattern, M. in Biology of the Three-Spined Stickleback (eds Ostlund-Nilsson, S. et al.) 1–40 (CRC Press, 2006).

  • Kawahara, R., Miya, M., Mabuchi, K., Near, T. J. & Nishida, M. Stickleback phylogenies resolved: evidence from mitochondrial genomes and 11 nuclear genes. Mol. Phylogenet. Evol. 50, 401–404 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aldenhoven, J. T., Miller, M. A., Corneli, P. S. & Shapiro, M. D. Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits. Mol. Ecol. 19, 4061–4076 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bell, M. & Foster, S. A. The Evolutionary Biology of the Threespine Stickleback (Oxford Univ. Press, 1994).

  • Miller, C. T. et al. cis-regulatory changes in Kit Ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131, 1179–1189 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cleves, P. A. et al. Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6. Proc. Natl Acad. Sci. USA 111, 13912–13917 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moodie, G. E. E. Morphology, life history, and ecology of an unusual stickleback (Gasterosteus aculeatus) in the Queen Charlotte Islands, Canada. Can. J. Zool. 50, 721–732 (1972).

    Article 

    Google Scholar
     

  • Spoljaric, M. A. & Reimchen, T. E. Habitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: potential for rapid shifts in colonizing populations. J. Morphol. 272, 590–597 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reimchen, T. E. Spine deficiency and polymorphism in a population of Gasterosteus aculeatus: an adaptation to predators? Can. J. Zool. 58, 1232–1244 (1980).

    Article 

    Google Scholar
     

  • Jones, F. C. et al. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr. Biol. 22, 83–90 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Berner, D., Moser, D., Roesti, M., Buescher, H. & Salzburger, W. Genetic architecture of skeletal evolution in European lake and stream stickleback. Evolution 68, 1792–1805 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miller, C. T. et al. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics 197, 405–420 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoegg, S., Boore, J. L., Kuehl, J. V. & Meyer, A. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics 8, 317 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ahn, D. G. & Gibson, G. Expression patterns of threespine stickleback Hox genes and insights into the evolution of the vertebrate body axis. Dev. Genes Evol. 209, 482–494 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahn, D. G. & Gibson, G. Axial variation in the threespine stickleback: relationship to Hox gene expression. Dev. Genes Evol. 209, 473–481 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swarup, H. Stages in the development of the stickleback Gasterosteus aculeatus (L.). J. Embryol. Exp. Morphol. 6, 373–383 (1958).

    CAS 
    PubMed 

    Google Scholar
     

  • Hagen, D. W. Isolating mechanisms in threespine sticklebacks (Gasterosteus). J. Fish. Res. Board Can. 24, 1637–1692 (1967).

    Article 

    Google Scholar
     

  • Blouw, D. M. & Hagen, D. W. The adaptive significance of dorsal spine variation in the fourspine stickleback, Apeltes quadracus, I. Geographic variation in spine number. Can. J. Zool. 62, 1329–1339 (1984).

    Article 

    Google Scholar
     

  • Blouw, D. M. The adaptive significance of a polymorphism for dorsal spine number in Apeltes quadracus, and comparison with several coexisting sticklebacks (Univ. of New Brunswick, 1982).

  • Hagen, D. W. & Blouw, D. M. Heritability of dorsal spines in the fourspine stickleback (Apeltes quadracus). Heredity 50, 275–281 (1983).

    Article 

    Google Scholar
     

  • Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Roberts Kingman, G. A. et al. Predicting future from past: the genomic basis of recurrent and rapid stickleback evolution. Sci. Adv. 7, eabg5285 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simons, C., Pheasant, M., Makunin, I. V. & Mattick, J. S. Transposon-free regions in mammalian genomes. Genome Res. 16, 164–172 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reimchen, T. E. Structural relationships between spines and lateral plates in threespine stickleback (Gasterosteus acleatus). Evolution 37, 931–946 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoogland, R., Morris, D. & Tinbergen, N. The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox). Behaviour 10, 205–236 (1956).

    Article 

    Google Scholar
     

  • Marchinko, K. B. Predation’s role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution 63, 127–138 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Reimchen, T. E. & Nosil, P. Temporal variation in divergent selection on spine number in threespine stickleback. Evolution 56, 2472–2483 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reimchen, T. E., Bergstrom, C. & Nosil, P. Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol. Ecol. Res. 15, 241–269 (2013).


    Google Scholar
     

  • Bell, M. A., Francis, R. C. & Havens, A. C. Pelvic reduction and its directional asymmetry in threespine sticklebacks from the Cook Inlet Region, Alaska. Copeia 1985, 437–444 (1985).

    Article 

    Google Scholar
     

  • Bell, M. A. & Baumgartner, J. V. An unusual population of Gasterosteus aculeatus from Boston, Massachusetts. Copeia 1984, 258–262 (1984).

    Article 

    Google Scholar
     

  • Reimchen, T. E. & Nosil, P. Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58, 1274–1281 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rieseberg, L. H., Archer, M. A. & Wayne, R. K. Transgressive segregation, adaptation and speciation. Heredity (Edinb.) 83, 363–372 (1999).

    Article 

    Google Scholar
     

  • Blouw, D. M. & Hagen, D. W. The adaptive significance of dorsal spine variation in the fourspine stickleback, Apeltes quadracus. II. Phenotype-environment correlations. Can. J. Zool. 62, 1340–1350 (1984).

    Article 

    Google Scholar
     

  • Blouw, D. M. & Hagen, D. W. The adaptive significance of dorsal spine variation in the fourspine stickleback, Apeltes quadracus. III. Correlated traits and experimental evidence on predation. Heredity 53, 371–382 (1984).

    Article 

    Google Scholar
     

  • Blouw, D. M. & Hagen, D. W. The adaptive significance of dorsal spine variation in the fourspine stickleback, Apeltes quadracus. IV. phenotypic covariation with closely related species. Heredity 53, 383–396 (1984).

    Article 

    Google Scholar
     

  • Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrett, R. D. H., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Durston, A. J. Global posterior prevalence is unique to vertebrates: a dance to the music of time? Dev. Dyn. 241, 1799–1807 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McIntyre, D. C. et al. Hox patterning of the vertebrate rib cage. Development 134, 2981–2989 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Bienz, M. & Tremml, G. Domain of Ultrabithorax expression in Drosophila visceral mesoderm from autoregulation and exclusion. Nature 333, 576–578 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delker, R. K., Ranade, V., Loker, R., Voutev, R. & Mann, R. S. Low affinity binding sites in an activating CRM mediate negative autoregulation of the Drosophila Hox gene Ultrabithorax. PLoS Genet. 15, e1008444 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Irvine, K. D., Botas, J., Jha, S., Mann, R. S. & Hogness, D. S. Negative autoregulation by Ultrabithorax controls the level and pattern of its expression. Development 117, 387–399 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Montavon, T. et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147, 1132–1145 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thompson, P. J., Macfarlan, T. S. & Lorincz, M. C. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62, 766–776 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, eaav6335 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Allais-Bonnet, A. et al. Analysis of polycerate mutants reveals the evolutionary co-option of HOXD1 for horn patterning in bovidae. Mol. Biol. Evol. 38, 2260–2272 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Greyvenstein, O. F. C., Reich, C. M., van Marle-Koster, E., Riley, D. G. & Hayes, B. J. Polyceraty (multi-horns) in Damara sheep maps to ovine chromosome 2. Anim. Genet. 47, 263–266 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ren, X. et al. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries). Sci. Rep. 6, 21111 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aoki, K., Okamoto, M., Tatsumi, K. & Ishikawa, Y. Cryopreservation of medaka spermatozoa. Zool. Sci. 14, 641–644 (1997).

    Article 

    Google Scholar
     

  • Cartwright, D. A., Troggio, M., Velasco, R. & Gutin, A. Genetic mapping in the presence of genotyping errors. Genetics 176, 2521–2527 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Broman, K. W., Wu, H., Sen, Ś. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kimura, Y., Hisano, Y., Kawahara, A. & Higashijima, S.-I. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci. Rep. 4, 6545 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wucherpfennig, J. I., Miller, C. T. & Kingsley, D. M. Efficient CRISPR–Cas9 editing of major evolutionary loci in sticklebacks. Evol. Ecol. Res. 20, 107–132 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lackner, D. H. et al. A generic strategy for CRISPR–Cas9-mediated gene tagging. Nat. Commun. 6, 10237 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Renaud, J.-B. et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR–Cas9 nucleases. Cell Rep. 14, 2263–2272 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Burger, A. et al. Maximizing mutagenesis with solubilized CRISPR–Cas9 ribonucleoprotein complexes. Development 143, 2025–2037 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, T. C. & Cresko, W. A. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol. Lett. 2, 9–21 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Varadharajan, S. et al. A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biol. Evol. 11, 3291–3308 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sham, P. C. & Curtis, D. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann. Hum. Genet. 59, 97–105 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350–1355 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 224 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kotani, T., Nagayoshi, S., Urasaki, A. & Kawakami, K. Transposon-mediated gene trapping in zebrafish. Methods 39, 199–206 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hosemann, K. E., Colosimo, P. F., Summers, B. R. & Kingsley, D. M. A simple and efficient microinjection protocol for making transgenic sticklebacks. Behaviour 141, 1345–1355 (2004).

    Article 

    Google Scholar
     

  • Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagayoshi, S. et al. Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135, 159–169 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Z. et al. Chromosomal fusions facilitate adaptation to divergent environments in threespine stickleback. Mol. Biol. Evol. 39, msab358 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van der Auwera, G. A. et al. From FastQ data to high‐confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).


    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Read more here: Source link