Printable Metal-Polymer Conductors for Local Drug Delivery

Safe and effective local drug delivery is challenging due to complex physiological barriers that limit the entry of drugs. Here, we report the metal-polymer conductors (MPCs) for local drug delivery via iontophoresis or electroporation. The MPCs are stretchable, conductive, and biocompatible. The flexible MPCs of different geometries are used both on a dry, flat surface (skin) and a moist, curved surface (cornea) with conformability. Conformal integration with the tissues enables good mechanical/electrical properties and realizes application of electrical voltage to the target areas for local drug delivery. By iontophoresis and electroporation, the MPCs achieve efficient delivery of doxorubicin and siRNA, leading to tumor regression and inhibition of corneal neovascularization, respectively. Our work presents an efficient strategy to harness the power of the MPCs to broaden the scope of local drug delivery to dry and wet organs with different surface topography.


Keywords:

corneal neovascularization; electroporation; iontophoresis; melanoma; metal−polymer conductors.

Read more here: Source link