Mobile resistome of microbial communities and antimicrobial residues from drinking water supply systems in Rio de Janeiro, Brazil

  • Ilyas, M. et al. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. Rev. Environ. Health 34, 171–186 (2019).

    MathSciNet 
    PubMed 
    CAS 

    Google Scholar
     

  • Roy, M. A. et al. A Metagenomic approach to evaluating surface water quality in Haiti. Int. J. Environ. Res. Public Health 15, 2211 (2018).

    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, M. & Lu, J. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?. Environ. Sci. Pollut. Res. 21, 11036–11053 (2014).

    CAS 

    Google Scholar
     

  • Yao, H., Qian, X., Yin, H., Gao, H. & Wang, Y. Regional risk assessment for point source pollution based on a water quality model of the Taipu River, China. Risk Anal. 35, 265–277 (2015).

    PubMed 

    Google Scholar
     

  • Dey, S., Bano, F. & Malik, A. Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. in Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology 1–26 (Elsevier, 2019). doi:doi.org/10.1016/B978-0-12-816189-0.00001-9.

  • Richardson, S. D. & Ternes, T. A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 86, 2813–2848 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • Felis, E. et al. Antimicrobial pharmaceuticals in the aquatic environment—occurrence and environmental implications. Eur. J. Pharmacol. 866, 172813 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Nassiri Koopaei, N. & Abdollahi, M. Health risks associated with the pharmaceuticals in wastewater. Daru 25, 9 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillings, M. R. et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269–1279 (2015).

    PubMed 
    CAS 

    Google Scholar
     

  • Baquero, F., Martínez, J.-L. & Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265 (2008).

    PubMed 
    CAS 

    Google Scholar
     

  • Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Grenni, P., Ancona, V. & Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 136, 25–39 (2018).

    CAS 

    Google Scholar
     

  • Kraemer, S. A., Ramachandran, A. & Perron, G. G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 7, 180 (2019).

    PubMed Central 
    CAS 

    Google Scholar
     

  • Subirats, J. et al. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities. Water Res. 138, 77–85 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. doi.org/10.1128/CMR.00088-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wein, T., Hülter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat. Commun. 10, 2595 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, A. Welcome to the plasmidome. Nat. Rev. Microbiol. 10, 379 (2012).

    PubMed 
    CAS 

    Google Scholar
     

  • Norman, A. et al. An improved method for including upper size range plasmids in metamobilomes. PLoS ONE 9, e104405 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aminov, R. I. & Mackie, R. I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271, 147–161 (2007).

    PubMed 
    CAS 

    Google Scholar
     

  • Rahman, M. H., Nonaka, L., Tago, R. & Suzuki, S. Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC-resistant bacteria in marine sediments of Japan. Environ. Sci. Technol. 42, 5055–5061 (2008).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Unc, A. & Goss, M. J. Transport of bacteria from manure and protection of water resources. Appl. Soil Ecol. 25, 1–18 (2004).


    Google Scholar
     

  • Alawi, M., Torrijos, T. V. & Walsh, F. Plasmid-mediated antimicrobial resistance in drinking water. Environ. Adv. doi.org/10.1016/j.envadv.2022.100191 (2022).

    Article 

    Google Scholar
     

  • Kümmerer, K. Antibiotics in the aquatic environment–a review–part I. Chemosphere 75, 417–434 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Kümmerer, K. Antibiotics in the aquatic environment—A review—Part II. Chemosphere doi.org/10.1016/j.chemosphere.2008.12.006 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Cardoso, O., Porcher, J.-M. & Sanchez, W. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: Review of evidence and need for knowledge. Chemosphere 115, 20–30 (2014).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • He, Y. et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3, 4 (2020).


    Google Scholar
     

  • Topp, E., Renaud, J., Sumarah, M. & Sabourin, L. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field. Sci. Total Environ. doi.org/10.1016/j.scitotenv.2016.03.210 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Segura, P. A., François, M., Gagnon, C. & Sauvé, S. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ. Health Perspect. 117, 675–684 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Benotti, M. J. et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 43, 597–603 (2009).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ben, Y. et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 169, 483–493 (2018).

    PubMed 

    Google Scholar
     

  • Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiol. Rev. 38, 761–778 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • Feng, B.-W. et al. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol. Ecol. 70, 80–92 (2009).

    PubMed 

    Google Scholar
     

  • Qin, Y. et al. Bacterial abundance and diversity in pond water supplied with different feeds. Sci. Rep. doi.org/10.1038/srep35232 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature doi.org/10.1038/nature13377 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanish, L. F. et al. Factors influencing bacterial diversity and community composition in municipal drinking waters in the Ohio River Basin, USA. PLoS ONE 11, e0157966 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medeiros, J. D. et al. Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz. J. Microbiol. doi.org/10.1016/j.bjm.2016.06.011 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, Michael J. & Meyer, Judy L. Streams in the urban landscape. In Urban Ecology (eds Marzluff, John M. et al.) (Springer, 2008).


    Google Scholar
     

  • Nogueira, I. S., Nabout, J. C., Oliveira, J. E. & Silva, K. D. Diversidade (alfa, beta e gama) da comunidade fitoplanctônica de quatro lagos artificiais urbanos do município de Goiânia, GO. Hoehnea 35, 219–233 (2008).


    Google Scholar
     

  • Tuomisto, H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164, 853–860 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Cabral, L. et al. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environ. Pollut. doi.org/10.1016/j.envpol.2016.05.078 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Conejo, M. C., García, I., Martínez-Martínez, L., Picabea, L. & Pascual, A. Zinc eluted from siliconized latex urinary catheters decreases OprD expression, causing carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47, 2313–2315 (2003).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Perron, K. et al. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279, 8761–8768 (2004).

    PubMed 
    CAS 

    Google Scholar
     

  • Guo, X., Li, J., Yang, F., Yang, J. & Yin, D. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. Sci. Total Environ. doi.org/10.1016/j.scitotenv.2014.06.035 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Furukawa, T., Jikumaru, A., Ueno, T. & Sei, K. Inactivation effect of antibiotic-resistant gene using chlorine disinfection. Water (Switzerland) doi.org/10.3390/w9070547 (2017).

    Article 

    Google Scholar
     

  • Khan, H., Miao, X., Liu, M., Ahmad, S. & Bai, X. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ. Pollut. doi.org/10.1016/j.envpol.2019.113818 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, A.-D., Li, L.-G. & Zhang, T. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front. Microbiol. 6, 1025 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nesme, J. et al. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol. doi.org/10.1016/j.cub.2014.03.036 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Taggar, G., Attiq Rehman, M., Boerlin, P. & Diarra, M. Molecular epidemiology of carbapenemases in enterobacteriales from humans, animals, food and the environment. Antibiotics 9, 693 (2020).

    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, Y.-Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet. Infect. Dis. 16, 161–168 (2016).

    PubMed 

    Google Scholar
     

  • Fernandes, M. R. et al. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Eurosurveillance doi.org/10.2807/1560-7917.ES.2016.21.17.30214 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kempf, I., Jouy, E. & Chauvin, C. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents doi.org/10.1016/j.ijantimicag.2016.09.016 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Catry, B. et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): Development of resistance in animals and possible impact on human and animal health. Int. J. Antimicrob. Agents 46, 297–306 (2015).

    PubMed 
    CAS 

    Google Scholar
     

  • Rossolini, G. M. et al. Metallo-β-lactamase producers in environmental microbiota: New molecular class B enzyme in Janthinobacterium lividum. Antimicrob. Agents Chemother. doi.org/10.1128/AAC.45.3.837-844.2001 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marathe, N. P. et al. Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Res. doi.org/10.1016/j.watres.2017.07.060 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Piedra-Carrasco, N. et al. Carbapenemase-producing enterobacteriaceae recovered from a Spanish river ecosystem. PLoS ONE doi.org/10.1371/journal.pone.0175246 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam, M. A. et al. Environmental spread of New Delhi metallo-β- lactamase-1-producing multidrug-resistant bacteria in Dhaka, Bangladesh. Appl. Environ. Microbiol. doi.org/10.1128/AEM.00793-17 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mombini, S., Rezatofighi, S. E., Kiyani, L. & Motamedi, H. Diversity and metallo-β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. J. Environ. Manage. doi.org/10.1016/j.jenvman.2018.10.068 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ashbolt, N. J. et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. doi.org/10.1289/ehp.1206316 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler, C. & Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3, 399 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Gu, A. Z., He, M., Li, D. & Chen, J. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ. Sci. Technol. 51, 570–580 (2017).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, D., Zeng, S., He, M. & Gu, A. Z. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena. Environ. Sci. Technol. 50, 3193–3201 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ding, C. et al. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanotoxicology 10, 1051–1060 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Fish, K. E., Reeves-McLaren, N., Husband, S. & Boxall, J. Author Correction: Uncharted waters: The unintended impacts of residual chlorine on water quality and biofilms. NPJ Biofilms Microbiomes 8, 55 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergeron, S., Boopathy, R., Nathaniel, R., Corbin, A. & LaFleur, G. Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int. Biodeterior. Biodegrad. 102, 370–374 (2015).

    CAS 

    Google Scholar
     

  • Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714–5718 (2009).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Colomer-Lluch, M., Jofre, J. & Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE 6, e17549 (2011).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Britto, A. L., Maiello, A. & Quintslr, S. Water supply system in the Rio de Janeiro Metropolitan Region: Open issues, contradictions, and challenges for water access in an emerging megacity. J. Hydrol. 573, 1007–1020 (2019).


    Google Scholar
     

  • Bacha, L. et al. Risk of Collapse in water quality in the Guandu River (Rio de Janeiro, Brazil). Microb. Ecol. 84, 314–324 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • U. S. Environmental Protection Agency. Method 1694 : Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. EPA Method (2007) doi:doi.org/10.1002/etc.3451.

  • Monteiro, M. et al. Development and validation of liquid chromatography-tandem mass spectrometry methods for determination of beta-lactams, macrolides, fluoroquinolones, sulfonamides and tetracyclines in surface and drinking water from Rio de Janeiro, Brazil. J. Braz. Chem. Soc. doi.org/10.21577/0103-5053.20170203 (2017).

    Article 

    Google Scholar
     

  • Communities European. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 8–36 (2002).

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Andrews, S. FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics www.bioinformatics.babraham.ac.uk/projects/ (2010) doi:citeulike-article-id:11583827.

  • Schmieder, R. & Edwards, R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 7, 73–89 (2012).

    PubMed 
    CAS 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. doi.org/10.1038/s41596-019-0264-1 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keegan, K. P., Glass, E. M. & Meyer, F. MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol. Biol. 1399, 207–233 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. doi.org/10.1093/nar/gki866 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature doi.org/10.1038/nature06810 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Alcock, B. P. et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. doi.org/10.1093/nar/gkz935 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dias, M. F. et al. Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. Water Res. 174, 115630 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Read more here: Source link