Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria

  • Miyakawa, T., Matsuzawa, H., Matsuhashi, M. & Sugino, Y. Cell wall peptidoglycan mutants of Escherichia coli K-12: existence of two clusters of genes, mra and mrb, for cell wall peptidoglycan biosynthesis. J. Bacteriol. 112, 950–958 (1972).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayala, J. A., Garrido, T., De Pedro, M. A. & Vicente, M. Molecular biology of bacterial septation. New Compr. Biochem. 27, 73–101 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Francis, F., Ramirez-Arcos, S., Salimnia, H., Victor, C. & Dillon, J. A. R. Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 251, 141–151 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Real, G. & Henriques, A. O. Localization of the Bacillus subtilis murB gene within the dcw cluster is important for growth and sporulation. J. Bacteriol. 188, 1721–1732 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sham, L.-T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuzawa, H. et al. Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. J. Bacteriol. 171, 558–560 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pende, N. et al. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nat. Commun. 12, 3214 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boes, A., Olatunji, S., Breukink, E. & Terrak, M. Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio 10, e01912–e01918 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mingorance, J. & Tamames, J. in Molecules in Time and Space (eds Vicente, M., et al.) Ch. 13 (Springer, 2004).

  • Nikolaichik, Y. A. & Donachie, W. D. Conservation of gene order amongst cell wall and cell division genes in Eubacteria, and ribosomal genes in Eubacteria and Eukaryotic organelles. Genetica 108, 1–7 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vicente, M., Gomez, M. J. & Ayala, J. A. Regulation of transcription of cell division genes in the Eschericia coli dcw cluster. Cell. Mol. Life Sci. 54, 317–324 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235, 209–220 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Real, G., Autret, S., Harry, E. J., Errington, J. & Henriques, A. O. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Mol. Microbiol. 55, 349–367 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamames, J., González-Moreno, M., Mingorance, J., Valencia, A. & Vicente, M. Bringing gene order into bacterial shape. Trends Genet. 17, 124–126 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mingorance, J., Tamames, J. & Vicente, M. Genomic channeling in bacterial cell division. J. Mol. Recognit. 17, 481–487 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Megrian, D., Taib, N., Jaffe, A., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall (dcw) gene cluster across Bacteria. Mendeley Data doi.org/10.17632/4y5mzppzmb.1 (2022).

  • Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taib, N. et al. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4, 1661–1672 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature doi.org/10.1038/s41586-022-04834-7 (2022).

  • Rohs, P. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 315–336 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Antunes, A. et al. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J. Bacteriol. 190, 3580–3587 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144, 324–333 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Pilhofer, M. et al. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190, 3192–3202 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeske, O. et al. Planctomycetes do possess a peptidoglycan cell wall. Nat. Commun. 6, 7116 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilhofer, M. et al. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat. Commun. 4, 1–7 (2013).

    Article 

    Google Scholar
     

  • Van Teeseling, M. C. F. et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6, 1–6 (2015).

    Article 

    Google Scholar
     

  • Rivas-Marín, E. & Devos, D. P. The paradigms they are a-changin’: past, present and future of PVC bacteria research. A. Van Leeuw. 111, 785–799 (2018).

    Article 

    Google Scholar
     

  • Rivas-Marín, E., Canosa, I. & Devos, D. P. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Planctomycetesverrucomicrobia-Chlamydiae superphylum. Front. Microbiol. 7, 1–11 (2016).

    Article 

    Google Scholar
     

  • Hoiczyk, E. & Hansel, A. Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182, 1191–1199 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, R. et al. Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340–351 (1992).

    Article 

    Google Scholar
     

  • L’Haridon, S. et al. Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 701–711 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Stohr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M. Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int. J. Syst. Evol. Microbiol. 51, 1853–1862 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Hidaka, E., Kaneko, Y., Akamatsu, T. & Ota, H. Ultrastructure of Helicobacter pylori in human gastric mucosa and H. pylori-infected human gastric mucosa using transmission electron microscopy and the high-pressure freezing-freeze substitution technique. J. Gastroenterol. 41, 569–574 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, A. et al. Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. MicrobiologyOpen 3, 702–710 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porcelli, I., Reuter, M., Pearson, B. M., Wilhelm, T. & van Vliet, A. H. M. Parallel evolution of genome structure and transÿcriptional landscape in the Epsilonproteobacteria. BMC Genom. 14, 616 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, A. L. Were Gram-positive rods the first bacteria? Trends Microbiol. 11, 166–170 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siefert’t, J. L. & Fox, G. E. Phylogenetic mapping of bacterial morphology. Microbiology 144, 2803–2808 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Yulo, P. & Hendrickson, H. L. The evolution of spherical cell shape; progress and perspective. Biochem. Soc. Trans. 47, 1621–1634 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luef, B. et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6, 1–8 (2015).

    Article 

    Google Scholar
     

  • Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaffe, A. L., Castelle, C. J., Matheus Carnevali, P. B., Gribaldo, S. & Banfield, J. F. The rise of diversity in metabolic platforms across the candidate phyla radiation. BMC Biol. 18, 1–15 (2020).

    Article 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, M. R. Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees. Bioinformatics 36, 5007–5013 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, M. R. Quartet: comparison of phylogenetic trees using quartet and bipartition measures. Zenodo doi.org/10.5281/zenodo.3630138 (2019).

  • Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 1–83 (2006).

    Article 

    Google Scholar
     

  • Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, H., Mori, H., Itoh, T. & Gojobori, T. Genome plasticity as a paradigm of eubacteria evolution. J. Mol. Evol. 44, S57–S64 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Léonard, R. R. et al. Was the last bacterial common ancestor a monoderm after all? Genes 13, 376 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, K. G. & Tahon, G. Science depends on nomenclature, but nomenclature is not science. Nat. Rev. Micro. doi.org/10.1038/s41579-022-00684-2 (2022).

  • Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 11, 431 (2010).

    Article 

    Google Scholar
     

  • Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 9, e110726 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).

    Article 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishikawa, S. A., Zhukova, A., Iwasaki, W. & Gascuel, O. A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 36, 2069–2085 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    CAS 

    Google Scholar
     

  • Vos, P. et al. (eds) Bergey’s Manual of Systematic Bacteriology Vol. 3 (Springer Science & Business Media, 2011).

  • Antunes, L. C. et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. eLife 5, e14589 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link