Assessing spermatozoal small ribonucleic acids and their relationship to blastocyst development in idiopathic infertile males

  • Vander, B. M. & Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 62, (2018).

  • Sun, H. et al. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging 11, 10952 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, K. A. et al. Male infertility is a women’s health issue-research and clinical evaluation of male infertility is needed. Cells 9, (2020).

  • Male infertility. Lancet 397, 319–333 (2021).

  • Leaver, R. B. Male infertility: An overview of causes and treatment options. Br. J. Nurs. 25, (2016).

  • Schlegel, P. N. et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil. Steril. 115, 54–61 (2021).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Schlegel, P. N. et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part II. Fertil. Steril. 115, 62–69 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Christina Wang, R. S. S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 102, 1502 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Immler, S. The sperm factor: Paternal impact beyond genes. Heredity 121, 239 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burl, R. B., Clough, S., Sendler, E., Estill, M. & Krawetz, S. A. Sperm RNA elements as markers of health. Syst. Biol. Reprod. Med. 64, (2018).

  • Krawetz, S. A. et al. A survey of small RNAs in human sperm. Hum. Reprod. 26, 3401 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, U. Paternal contributions to offspring health: Role of sperm small RNAs in intergenerational transmission of epigenetic information. Front. Cell Dev. Biol. 0, (2019).

  • Hamilton, M., Russell, S., Moskovtsev, S., Krawetz, S. A. & Librach, C. The developmental significance of sperm-borne ribonucleic acids and their potential for use as diagnostic markers for male factor infertility. F&S Rev. 3, 11–23 (2022).

    Article 

    Google Scholar
     

  • Sharma, U. et al. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev. Cell 46, (2018).

  • Sellem, E. et al. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 14, 24 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanger, S. J. et al. The abundance of a transfer RNA-derived RNA fragment small RNA subpopulation is enriched in cauda spermatozoa. ExRNA 2, 1–17 (2020).

    Article 

    Google Scholar
     

  • Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, (2016).

  • Zhou, W., De Iuliis, G. N., Dun, M. D. & Nixon, B. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. 9, 59 (2018).

    Article 

    Google Scholar
     

  • Trigg, N. A., Eamens, A. L. & Nixon, B. The contribution of epididymosomes to the sperm small RNA profile. Reproduction 157, R209–R223 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estill, M., Hauser, R., Nassan, F. L., Moss, A. & Krawetz, S. A. The effects of di-butyl phthalate exposure from medications on human sperm RNA among men. Sci. Rep. 9, 12397 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chianese, R. et al. Bisphenol a in Reproduction: Epigenetic effects. Curr. Med. Chem. 25, 748–770 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nätt, D. et al. Human sperm displays rapid responses to diet. PLoS Biol. 17, e3000559 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingerslev, L. R. et al. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin. Epigenetics 10, 12 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanford, K. I. et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes 67, 2530–2540 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, (2016).

  • Jodar, M. Sperm and seminal plasma RNAs: What roles do they play beyond fertilization?. Reproduction 158, R113–R123 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, L. et al. Sperm-carried RNAs play critical roles in mouse embryonic development. Oncotarget 8, 67394 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zafar, M. I., Lu, S. & Li, H. Sperm-oocyte interplay: An overview of spermatozoon’s role in oocyte activation and current perspectives in diagnosis and fertility treatment. Cell Biosci. 11, 1–15 (2021).

    Article 

    Google Scholar
     

  • Yuan, S. et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143, 635–647 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conine, C. C., Sun, F., Song, L., Rivera-Pérez, J. A. & Rando, O. J. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Dev. Cell 46, 470-480.e3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, L., Fang, L., Shi, B., Qiu, S. & Ye, Y. Spermatozoa expression of piR-31704, piR-39888, and piR-40349 and their correlation to sperm concentration and fertilization rate after ICSI. Reprod. Sci. 25, 733–739 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahbar, S. et al. MicroRNA‐based regulatory circuit involved in sperm infertility. Andrologia 52 (2020).

  • Chen, X. et al. Human sperm tsRNA as potential biomarker and therapy target for male fertility. Reproduction 161, 111–122 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hua, M. et al. Identification of small non-coding RNAs as sperm quality biomarkers for in vitro fertilization. Cell Discov 5, 20 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grosso, J. B. et al. Levels of seminal tRNA-derived fragments from normozoospermic men correlate with the success rate of ART. Mol. Hum. Reprod. 27, (2021).

  • World Health Organization. WHO laboratory manual for the examination and processing of human semen. (2010).

  • Goodrich, R. J., Anton, E. & Krawetz, S. A. Isolating mRNA and small noncoding RNAs from human sperm. Methods Mol. Biol. 927, (2013).

  • Russell, S. J., Menezes, K., Balakier, H. & Librach, C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Syst. Biol. Reprod. Med. 66, 129–139 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, P. P. & Lowe, T. M. GtRNAdb: A database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenkranz, D. piRNA cluster database: A web resource for piRNA producing loci. Nucleic Acids Res. 44, D223–D230 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, S. X., Jung, D. & Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, (2015).

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbert, Z. T. et al. Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction. BMC Genomics 19, 199 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schroeder, A. et al. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 1–14 (2006).

    Article 

    Google Scholar
     

  • Chu, C. et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation. J. Mol. Cell Biol. 9, 256–259 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, G. D. et al. Cleavage of rRNA ensures translational cessation in sperm at fertilization. Mol. Hum. Reprod. 17, 721–726 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. H. et al. Single-molecule long-read sequencing reveals a conserved intact long RNA profile in sperm. Nat. Commun. 12, 1361 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantano, L. et al. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA 21, 1085–1095 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, Y. et al. Decreased piRNAs in Infertile semen are related to downregulation of sperm MitoPLD expression. Front. Endocrinol. 12, 696121 (2021).

    Article 

    Google Scholar
     

  • Gou, L.-T. et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 25, 266 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Early cleavage of preimplantation embryos is regulated by tRNAGln-TTG–derived small RNAs present in mature spermatozoa. J. Biol. Chem. 295, 10885–10900. doi.org/10.1074/jbc.ra120.013003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. 5′ Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos. Sci. Adv. doi.org/10.1126/sciadv.abh0494 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H.-M., Tan, X., Zhang, S., Yao, J. & Li, H.-G. Transfer- or ‘transmission’-RNA fragments? The roles of tsRNAs in the reproductive system. Mol. Human Reprod. doi.org/10.1093/molehr/gaab026 (2021).

    Article 

    Google Scholar
     

  • Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-Retrotransposon Control by tRNA-Derived Small RNAs. Cell 170, 61-71.e11 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna, S. et al. Dynamic expression of tRNA‐derived small RNAs define cellular states. EMBO Rep. 20, (2019).

  • Pandey, K. K. et al. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. Mol. Ther. Nucleic Acids 26, 161 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gòdia, M. et al. A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine. Genet. Sel. Evol. 52, 72 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Halima, M. et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil. Steril. 113, (2020).

  • Dehghan, Z., Mohammadi-Yeganeh, S., Rezaee, D. & Salehi, M. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev. Biol. 480, 69–77 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Shi, J. & Liu, W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun. Signal. 18, (2020).

  • Wang, L., Zeng, L., Jiang, H., Li, Z. & Liu, R. Microarray profile of long noncoding RNA and messenger RNA expression in a model of Alzheimer’s disease. Life vol. 10 64 Preprint at doi.org/10.3390/life10050064 (2020).

  • Summanwar, A., Basu, U., Kav, N. N. V. & Rahman, H. Identification of lncRNAs in response to infection by in and development of lncRNA-based SSR markers. Genome 64, 547–566 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attali, E. & Yogev, Y. The impact of advanced maternal age on pregnancy outcome. Best Pract. Res. Clin. Obstet. Gynaecol. 70, (2021).

  • Guo, Y. et al. Altered sperm tsRNAs in aged male contribute to anxiety-like behavior in offspring. Aging Cell 20, e13466 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halvaei, I., Litzky, J. & Esfandiari, N. Advanced paternal age: Effects on sperm parameters, assisted reproduction outcomes and offspring health. Reprod. Biol. Endocrinol. 18, (2020).

  • Wu, C., Blondin, P., Vigneault, C., Labrecque, R. & Sirard, M.-A. Sperm miRNAs–potential mediators of bull age and early embryo development. BMC Genomics 21, 1–11 (2020).

    Article 

    Google Scholar
     

  • Read more here: Source link