The Efficiency of Gene Activation Using CRISPR/dCas9-Based Transactivation Systems Depends on the System Run Time

  • Zhang H., Qin C., An C., Zheng X., Wen S., Chen W., Liu X., Lv Z., Yang P., Xu W., Gao W., Wu Y. 2021. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer. 20 (1), 126. doi.org/10.1186/s12943-021-01431-6

    Article 
    CAS 

    Google Scholar
     

  • Shakirova K.M., Ovchinnikova V.Y., Dashinimaev E.B. 2020. Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front. Bioeng. Biotechnol. 8, 882. doi.org/10.3389/fbioe.2020.00882

    Article 

    Google Scholar
     

  • Yegorov E.E., Terekhov S.M., Vishniakova Kh.S., Karachentsev D.N., Kazimirchuk E.V., Tsvetkova T.G., Veiko N.N., Smirnova T.D., Makarenkov A.S., El’darov M.A., Meshcheryakova Yu.A., Lyapunova N.A., Zelenin A.V. 2003. Telomerization as a method of obtaining immortal human cells preserving normal properties. Russ. J. Dev. Biol. 34 (3), 145–153.

    Article 
    CAS 

    Google Scholar
     

  • Cheng A.W., Wang H., Yang H., Shi L., Katz Y., Theunissen T.W., Rangarajan S., Shivalila C.S., Dadon D.B., Jaenisch R. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23 (10), 1163‒1171. doi.org/10.1038/cr.2013.122

  • Liu Y., Yu C., Daley T.P., Wang F., Cao W.S., Bhate S., Lin X., Still C. 2nd, Liu H., Zhao D., Wang H., Xie X.S., Ding S., Wong W.H., Wernig M., Qi L.S. 2018. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell. 23 (5), 758‒771. e8. doi.org/10.1016/j.stem.2018.09.003

  • Ho S.M., Hartley B.J., Flaherty E., Rajarajan P., Abdelaal R., Obiorah I., Barretto N., Muhammad H., Phatnani H.P., Akbarian S., Brennand K.J. 2017. Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-Derived NPCs, neurons, and astrocytes. Stem Cell Rep. 9 (2), 615‒628. doi.org/10.1016/j.stemcr.2017.06.012

    Article 
    CAS 

    Google Scholar
     

  • Weltner J., Balboa D., Katayama S., Bespalov M., Krjutškov K., Jouhilahti E.M., Trokovic R., Kere J., Otonkoski T. 2018. Human pluripotent reprogramming with CRISPR activators. Nat. Commun.
    9 (1), 2643. doi.org/10.1038/s41467-018-05067-x

    Article 
    CAS 

    Google Scholar
     

  • Heckl D., Kowalczyk M.S., Yudovich D., Belizaire R., Puram R.V., McConkey M.E., Thielke A., Aster J.C., Regev A., Ebert B.L. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol.
    32 (9), 941‒946. doi.org/10.1038/nbt.2951

    Article 
    CAS 

    Google Scholar
     

  • Tanenbaum M.E., Gilbert L.A., Qi L.S., Weissman J.S., Vale R.D. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell.
    159 (3), 635‒646. doi.org/10.1016/j.cell.2014.09.039

    Article 
    CAS 

    Google Scholar
     

  • Moses C., Nugent F., Waryah C.B., Garcia-Bloj B., Harvey A.R., Blancafort P. 2019. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol. Ther. Nucleic Acids.
    14, 287‒300. doi.org/10.1016/j.omtn.2018.12.003

    Article 
    CAS 

    Google Scholar
     

  • Xi H., Young C.S., Pyle A.D. 2020. Generation of PAX7 reporter cells to investigate skeletal myogenesis from human pluripotent stem cells. STAR Protoc. 1 (3), 100158. doi.org/10.1016/j.xpro.2020.100158

    Article 

    Google Scholar
     

  • Chavez A., Scheiman J., Vora S., Pruitt B.W., Tuttle M., Iyer P.R. E., Lin S., Kiani S., Guzman C.D., Wiegand D.J., Ter-Ovanesyan D., Braff J.L., Davidsohn N., Housden B.E., Perrimon N., Weiss R., Aach J., Collins J.J., Church G.M. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods.
    12 (4), 326‒328. doi.org/10.1038/nmeth.3312

    Article 
    CAS 

    Google Scholar
     

  • Liu P., Chen M., Liu Y., Qi L.S., Ding S. 2018. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell. 22 (2), 252‒261. e4. doi.org/10.1016/j.stem.2017.12.001

  • Koay T.W., Osterhof C., Orlando I.M.C., Keppner A., Andre D., Yousefian S., Suárez Alonso M., Correia M., Markworth R., Schödel J., Hankeln T., Hoogewijs D. 2021. Androglobin gene expression patterns and FOXJ1-dependent regulation indicate its functional association with ciliogenesis. J. Biol. Chem.
    296, 100291. doi.org/10.1016/j.jbc.2021.100291

    Article 
    CAS 

    Google Scholar
     

  • Hu W., Wang X., Ma S., Peng Z., Cao Y., Xia Q. 2021. CRISPR-mediated endogenous activation of fibroin heavy chain gene triggers cellular stress responses in Bombyx mori embryonic cells. Insects. 12 (6), 552. doi.org/10.3390/insects12060552

    Article 

    Google Scholar
     

  • Friedman J.R., Kaestner K.H. 2006. The Foxa family of transcription factors in development and metabolism. Cell Mol. Life Sci. 63 (19-20), 2317‒2328. doi.org/10.1007/s00018-006-6095-6

    Article 
    CAS 

    Google Scholar
     

  • Iwafuchi-Doi M., Donahue G., Kakumanu A., Watts J.A., Mahony S., Pugh B.F., Lee D., Kaestner K.H., Zaret K.S. 2016. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell.
    62 (1), 79‒91. doi.org/10.1016/j.molcel.2016.03.001

    Article 
    CAS 

    Google Scholar
     

  • Read more here: Source link