Zhang H., Qin C., An C., Zheng X., Wen S., Chen W., Liu X., Lv Z., Yang P., Xu W., Gao W., Wu Y. 2021. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer. 20 (1), 126. doi.org/10.1186/s12943-021-01431-6
Shakirova K.M., Ovchinnikova V.Y., Dashinimaev E.B. 2020. Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front. Bioeng. Biotechnol. 8, 882. doi.org/10.3389/fbioe.2020.00882
Yegorov E.E., Terekhov S.M., Vishniakova Kh.S., Karachentsev D.N., Kazimirchuk E.V., Tsvetkova T.G., Veiko N.N., Smirnova T.D., Makarenkov A.S., El’darov M.A., Meshcheryakova Yu.A., Lyapunova N.A., Zelenin A.V. 2003. Telomerization as a method of obtaining immortal human cells preserving normal properties. Russ. J. Dev. Biol. 34 (3), 145–153.
Cheng A.W., Wang H., Yang H., Shi L., Katz Y., Theunissen T.W., Rangarajan S., Shivalila C.S., Dadon D.B., Jaenisch R. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23 (10), 1163‒1171. doi.org/10.1038/cr.2013.122
Liu Y., Yu C., Daley T.P., Wang F., Cao W.S., Bhate S., Lin X., Still C. 2nd, Liu H., Zhao D., Wang H., Xie X.S., Ding S., Wong W.H., Wernig M., Qi L.S. 2018. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell. 23 (5), 758‒771. e8. doi.org/10.1016/j.stem.2018.09.003
Ho S.M., Hartley B.J., Flaherty E., Rajarajan P., Abdelaal R., Obiorah I., Barretto N., Muhammad H., Phatnani H.P., Akbarian S., Brennand K.J. 2017. Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-Derived NPCs, neurons, and astrocytes. Stem Cell Rep. 9 (2), 615‒628. doi.org/10.1016/j.stemcr.2017.06.012
Weltner J., Balboa D., Katayama S., Bespalov M., Krjutškov K., Jouhilahti E.M., Trokovic R., Kere J., Otonkoski T. 2018. Human pluripotent reprogramming with CRISPR activators. Nat. Commun.
9 (1), 2643. doi.org/10.1038/s41467-018-05067-x
Heckl D., Kowalczyk M.S., Yudovich D., Belizaire R., Puram R.V., McConkey M.E., Thielke A., Aster J.C., Regev A., Ebert B.L. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol.
32 (9), 941‒946. doi.org/10.1038/nbt.2951
Tanenbaum M.E., Gilbert L.A., Qi L.S., Weissman J.S., Vale R.D. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell.
159 (3), 635‒646. doi.org/10.1016/j.cell.2014.09.039
Moses C., Nugent F., Waryah C.B., Garcia-Bloj B., Harvey A.R., Blancafort P. 2019. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol. Ther. Nucleic Acids.
14, 287‒300. doi.org/10.1016/j.omtn.2018.12.003
Xi H., Young C.S., Pyle A.D. 2020. Generation of PAX7 reporter cells to investigate skeletal myogenesis from human pluripotent stem cells. STAR Protoc. 1 (3), 100158. doi.org/10.1016/j.xpro.2020.100158
Chavez A., Scheiman J., Vora S., Pruitt B.W., Tuttle M., Iyer P.R. E., Lin S., Kiani S., Guzman C.D., Wiegand D.J., Ter-Ovanesyan D., Braff J.L., Davidsohn N., Housden B.E., Perrimon N., Weiss R., Aach J., Collins J.J., Church G.M. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods.
12 (4), 326‒328. doi.org/10.1038/nmeth.3312
Liu P., Chen M., Liu Y., Qi L.S., Ding S. 2018. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell. 22 (2), 252‒261. e4. doi.org/10.1016/j.stem.2017.12.001
Koay T.W., Osterhof C., Orlando I.M.C., Keppner A., Andre D., Yousefian S., Suárez Alonso M., Correia M., Markworth R., Schödel J., Hankeln T., Hoogewijs D. 2021. Androglobin gene expression patterns and FOXJ1-dependent regulation indicate its functional association with ciliogenesis. J. Biol. Chem.
296, 100291. doi.org/10.1016/j.jbc.2021.100291
Hu W., Wang X., Ma S., Peng Z., Cao Y., Xia Q. 2021. CRISPR-mediated endogenous activation of fibroin heavy chain gene triggers cellular stress responses in Bombyx mori embryonic cells. Insects. 12 (6), 552. doi.org/10.3390/insects12060552
Friedman J.R., Kaestner K.H. 2006. The Foxa family of transcription factors in development and metabolism. Cell Mol. Life Sci. 63 (19-20), 2317‒2328. doi.org/10.1007/s00018-006-6095-6
Iwafuchi-Doi M., Donahue G., Kakumanu A., Watts J.A., Mahony S., Pugh B.F., Lee D., Kaestner K.H., Zaret K.S. 2016. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell.
62 (1), 79‒91. doi.org/10.1016/j.molcel.2016.03.001
Read more here: Source link