Structural basis for intrinsic transcription termination

  • Ray-Soni, A., Bellecourt, M. J. & Landick, R. Mechanisms of bacterial transcription termination: all good things must end. Annu. Rev. Biochem. 85, 319–347 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

  • Arimbasseri, A. G. & Maraia, R. J. Mechanism of transcription termination by rna polymerase III utilizes a non-template strand sequence-specific signal element. Mol. Cell 58, 1124–1132 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yarnell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vannini, A. & Cramer, P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45, 439–446 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Porrua, O. & Libri, D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat. Rev. Mol. Cell Biol. 16, 190–202 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, J. W. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nielsen, S., Yuzenkova, Y. & Zenkin, N. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340, 1577–1580 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mairhofer, J., Wittwer, A., Cserjan-Puschmann, M. & Striedner, G. Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability. ACS Synth. Biol. 4, 265–273 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Peters, J. M., Vangeloff, A. D. & Landick, R. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412, 793–813 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. Y. et al. RNA polymerase accommodates a pause RNAhairpin by global conformational rearrangements that prolong pausing. Mol. Cell 69, 802–815.e801 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Structural basis for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827.e814 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II–DSIF–NELF. Nature 560, 601–606 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, J. Y. et al. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. eLife 6, e25478 (2017).

    Article 

    Google Scholar
     

  • Vvedenskaya, I. O. et al. Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344, 1285–1289 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Larson, M. H. et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344, 1042–1047 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, C. et al. Transcription factors modulate RNA polymerase conformational equilibrium. Nat. Commun. 13, 1546 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nat. Commun. 12, 2702 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lubkowska, L., Maharjan, A. S. & Komissarova, N. RNA folding in transcription elongation complex: implication for transcription termination. J. Biol. Chem. 286, 31576–31585 (2011).

    Article 
    CAS 

    Google Scholar
     

  • King, R. A., Markov, D., Sen, R., Severinov, K. & Weisberg, R. A. A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex. J. Mol. Biol. 342, 1143–1154 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Toulokhonov, I. & Landick, R. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol. Cell 12, 1125–1136 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ray-Soni, A., Mooney, R. A. & Landick, R. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proc. Natl Acad. Sci. USA 114, E9233–E9242 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Komissarova, N., Becker, J., Solter, S., Kireeva, M. & Kashlev, M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol. Cell 10, 1151–1162 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Larson, M. H., Greenleaf, W. J., Landick, R. & Block, S. M. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132, 971–982 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Santangelo, T. J. & Roberts, J. W. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14, 117–126 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Epshtein, V., Cardinale, C. J., Ruckenstein, A. E., Borukhov, S. & Nudler, E. An allosteric path to transcription termination. Mol. Cell 28, 991–1001 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kashlev, M. & Komissarova, N. Transcription termination: primary intermediates and secondary adducts. J. Biol. Chem. 277, 14501–14508 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bellecourt, M. J., Ray-Soni, A., Harwig, A., Mooney, R. A. & Landick, R. RNA polymerase clamp movement aids dissociation from DNA but is not required for RNA release at intrinsic terminators. J. Mol. Biol. 431, 696–713 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. S. & Roberts, J. W. Role of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl Acad. Sci. USA 103, 4870–4875 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ryder, A. M. & Roberts, J. W. Role of the non-template strand of the elongation bubble in intrinsic transcription termination. J. Mol. Biol. 334, 205–213 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Shankar, S., Hatoum, A. & Roberts, J. W. A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol. Cell 27, 914–927 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Harden, T. T. et al. Alternative transcription cycle for bacterial RNA polymerase. Nat. Commun. 11, 448 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, W. et al. Transcription reinitiation by recycling RNA polymerase that diffuses on DNA after releasing terminated RNA. Nat. Commun. 11, 450 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dey, S. et al. Structural insights into RNA-mediated transcription regulation in bacteria. Mol. Cell 82, 3885–3900.e3810 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pei, H. H. et al. The delta subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat. Commun. 11, 6418 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kouba, T. et al. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat. Commun. 11, 6419 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Newing, T. P. et al. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat. Commun. 11, 6420 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, H. et al. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Nat. Commun. 12, 6135 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Girbig, M. et al. Architecture of the yeast Pol III pre-termination complex and pausing mechanism on poly(dT) termination signals. Cell Rep. 40, 111316 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hudson, B. P. et al. Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc. Natl Acad. Sci. USA 106, 19830–19835 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hein, P. P. et al. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat. Struct. Mol. Biol. 21, 794–802 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ha, K. S., Toulokhonov, I., Vassylyev, D. G. & Landick, R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401, 708–725 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, A. et al. Opening and closing of the bacterial RNA polymerase clamp. Science 337, 591–595 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feklistov, A. et al. RNA polymerase motions during promoter melting. Science 356 863-866 (2017).

  • Read more here: Source link