Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca2+ release to protect stressed replication forks: Molecular Cell

  • Causes and consequences of replication stress.

    Nat. Cell Biol. 2014; 16: 2-9doi.org/10.1038/ncb2897

    • Tomasetti C.
    • Li L.
    • Vogelstein B.

    Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.

    Science. 2017; 355: 1330-1334doi.org/10.1126/science.aaf9011

  • Endogenous DNA damage as a source of genomic instability in cancer.

    Cell. 2017; 168: 644-656doi.org/10.1016/j.cell.2017.01.002

    • Halazonetis T.D.
    • Gorgoulis V.G.
    • Bartek J.

    An oncogene-induced DNA damage model for cancer development.

    Science. 2008; 319: 1352-1355doi.org/10.1126/science.1140735

    • Kotsantis P.
    • Petermann E.
    • Boulton S.J.

    Mechanisms of oncogene-induced replication stress: jigsaw falling into place.

    Cancer Discov. 2018; 8: 537-555doi.org/10.1158/2159-8290.CD-17-1461

    • Rickman K.
    • Smogorzewska A.

    Advances in understanding DNA processing and protection at stalled replication forks.

    J. Cell Biol. 2019; 218: 1096-1107doi.org/10.1083/jcb.201809012

    • Farmer H.
    • McCabe N.
    • Lord C.J.
    • Tutt A.N.
    • Johnson D.A.
    • Richardson T.B.
    • Santarosa M.
    • Dillon K.J.
    • Hickson I.
    • Knights C.
    • et al.

    Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.

    Nature. 2005; 434: 917-921doi.org/10.1038/nature03445

    • Bryant H.E.
    • Schultz N.
    • Thomas H.D.
    • Parker K.M.
    • Flower D.
    • Lopez E.
    • Kyle S.
    • Meuth M.
    • Curtin N.J.
    • Helleday T.

    Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.

    Nature. 2005; 434: 913-917doi.org/10.1038/nature03443

    • Ray Chaudhuri A.
    • Callen E.
    • Ding X.
    • Gogola E.
    • Duarte A.A.
    • Lee J.E.
    • Wong N.
    • Lafarga V.
    • Calvo J.A.
    • Panzarino N.J.
    • et al.

    Replication fork stability confers chemoresistance in BRCA-deficient cells.

    Nature. 2016; 535: 382-387doi.org/10.1038/nature18325

  • Mechanisms of PARP inhibitor sensitivity and resistance.

    DNA Repair (Amst). 2018; 71: 172-176doi.org/10.1016/j.dnarep.2018.08.021

  • Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks.

    Genes Dev. 2008; 22: 1816-1827doi.org/10.1101/gad.477208

    • Saldivar J.C.
    • Cortez D.
    • Cimprich K.A.

    The essential kinase ATR: ensuring faithful duplication of a challenging genome.

    Nat. Rev. Mol. Cell Biol. 2017; 18: 622-636doi.org/10.1038/nrm.2017.67

    • Li S.
    • Lavagnino Z.
    • Lemacon D.
    • Kong L.
    • Ustione A.
    • Ng X.
    • Zhang Y.
    • Wang Y.
    • Zheng B.
    • Piwnica-Worms H.
    • et al.

    Ca(2+)-stimulated AMPK-dependent phosphorylation of Exo1 protects stressed replication forks from aberrant resection.

    Mol. Cell. 2019; 74 ()doi.org/10.1016/j.molcel.2019.04.003

    • Nagasawa M.
    • Nakagawa Y.
    • Tanaka S.
    • Kojima I.

    Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages.

    J. Cell. Physiol. 2007; 210: 692-702doi.org/10.1002/jcp.20883

  • Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor.

    J. Physiol. Sci. 2016; 66: 359-365doi.org/10.1007/s12576-016-0434-7

  • Potential roles in cardiac physiology and pathology of the cation channel TRPV2 expressed in cardiac cells and cardiac macrophages: a mini-review.

    Am. J. Physiol. Heart Circ. Physiol. 2020; 318: H181-H188doi.org/10.1152/ajpheart.00491.2019

    • Perálvarez-Marín A.
    • Doñate-Macian P.
    • Gaudet R.

    What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel?.

    FEBS Journal. 2013; 280: 5471-5487doi.org/10.1111/febs.12302

    • Siveen K.S.
    • Nizamuddin P.B.
    • Uddin S.
    • Al-Thani M.
    • Frenneaux M.P.
    • Janahi I.A.
    • Steinhoff M.
    • Azizi F.

    TRPV2: A cancer biomarker and potential therapeutic target.

    Dis. Markers. 2020; 2020: 8892312doi.org/10.1155/2020/8892312

    • Ragu S.
    • Matos-Rodrigues G.
    • Lopez B.S.

    Replication stress, DNA damage, inflammatory cytokines and innate immune response.

    Genes (Basel). 2020; 11: 409doi.org/10.3390/genes11040409

    • Ho S.S.
    • Zhang W.Y.
    • Tan N.Y.
    • Khatoo M.
    • Suter M.A.
    • Tripathi S.
    • Cheung F.S.
    • Lim W.K.
    • Tan P.H.
    • Ngeow J.
    • Gasser S.

    The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells.

    Immunity. 2016; 44: 1177-1189doi.org/10.1016/j.immuni.2016.04.010

    • Erdal E.
    • Haider S.
    • Rehwinkel J.
    • Harris A.L.
    • McHugh P.J.

    A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1.

    Genes Dev. 2017; 31: 353-369doi.org/10.1101/gad.289769.116

    • Shen Y.J.
    • Le Bert N.
    • Chitre A.A.
    • Koo C.X.
    • Nga X.H.
    • Ho S.S.
    • Khatoo M.
    • Tan N.Y.
    • Ishii K.J.
    • Gasser S.

    Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells.

    Cell Rep. 2015; 11: 460-473doi.org/10.1016/j.celrep.2015.03.041

  • cGAS in action: expanding roles in immunity and inflammation.

    Science. 2019; 363: eaat8657doi.org/10.1126/science.aat8657

    • Motwani M.
    • Pesiridis S.
    • Fitzgerald K.A.

    DNA sensing by the cGAS-STING pathway in health and disease.

    Nat. Rev. Genet. 2019; 20: 657-674doi.org/10.1038/s41576-019-0151-1

    • Li X.D.
    • Wu J.
    • Gao D.
    • Wang H.
    • Sun L.
    • Chen Z.J.

    Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects.

    Science. 2013; 341: 1390-1394doi.org/10.1126/science.1244040

    • Wu J.
    • Sun L.
    • Chen X.
    • Du F.
    • Shi H.
    • Chen C.
    • Chen Z.J.

    Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA.

    Science. 2013; 339: 826-830doi.org/10.1126/science.1229963

    • Sun L.
    • Wu J.
    • Du F.
    • Chen X.
    • Chen Z.J.

    Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

    Science. 2013; 339: 786-791doi.org/10.1126/science.1232458

    • Zhang X.
    • Shi H.
    • Wu J.
    • Zhang X.
    • Sun L.
    • Chen C.
    • Chen Z.J.

    Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.

    Mol. Cell. 2013; 51: 226-235doi.org/10.1016/j.molcel.2013.05.022

    • Gao P.
    • Ascano M.
    • Zillinger T.
    • Wang W.
    • Dai P.
    • Serganov A.A.
    • Gaffney B.L.
    • Shuman S.
    • Jones R.A.
    • Deng L.
    • et al.

    Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA.

    Cell. 2013; 154: 748-762doi.org/10.1016/j.cell.2013.07.023

    • Diner E.J.
    • Burdette D.L.
    • Wilson S.C.
    • Monroe K.M.
    • Kellenberger C.A.
    • Hyodo M.
    • Hayakawa Y.
    • Hammond M.C.
    • Vance R.E.

    The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING.

    Cell Rep. 2013; 3: 1355-1361doi.org/10.1016/j.celrep.2013.05.009

    • Ablasser A.
    • Goldeck M.
    • Cavlar T.
    • Deimling T.
    • Witte G.
    • Röhl I.
    • Hopfner K.P.
    • Ludwig J.
    • Hornung V.

    cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING.

    Nature. 2013; 498: 380-384doi.org/10.1038/nature12306

    • Zhong B.
    • Yang Y.
    • Li S.
    • Wang Y.Y.
    • Li Y.
    • Diao F.
    • Lei C.
    • He X.
    • Zhang L.
    • Tien P.
    • Shu H.-B.

    The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Immunity. 2008; 29: 538-550doi.org/10.1016/j.immuni.2008.09.003

  • STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.

    Nature. 2008; 455: 674-678doi.org/10.1038/nature07317

    • Burdette D.L.
    • Monroe K.M.
    • Sotelo-Troha K.
    • Iwig J.S.
    • Eckert B.
    • Hyodo M.
    • Hayakawa Y.
    • Vance R.E.

    STING is a direct innate immune sensor of cyclic di-GMP.

    Nature. 2011; 478: 515-518doi.org/10.1038/nature10429

    • Kranzusch P.J.
    • Lee A.S.
    • Berger J.M.
    • Doudna J.A.

    Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity.

    Cell Rep. 2013; 3: 1362-1368doi.org/10.1016/j.celrep.2013.05.008

    • Gao P.
    • Ascano M.
    • Wu Y.
    • Barchet W.
    • Gaffney B.L.
    • Zillinger T.
    • Serganov A.A.
    • Liu Y.
    • Jones R.A.
    • Hartmann G.
    • et al.

    Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase.

    Cell. 2013; 153: 1094-1107doi.org/10.1016/j.cell.2013.04.046

    • Liu H.
    • Zhang H.
    • Wu X.
    • Ma D.
    • Wu J.
    • Wang L.
    • Jiang Y.
    • Fei Y.
    • Zhu C.
    • Tan R.
    • et al.

    Nuclear cGAS suppresses DNA repair and promotes tumorigenesis.

    Nature. 2018; 563: 131-136doi.org/10.1038/s41586-018-0629-6

    • Jiang H.
    • Xue X.
    • Panda S.
    • Kawale A.
    • Hooy R.M.
    • Liang F.
    • Sohn J.
    • Sung P.
    • Gekara N.O.

    Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death.

    EMBO J. 2019; 38: e102718doi.org/10.15252/embj.2019102718

    • Chen H.
    • Chen H.
    • Zhang J.
    • Wang Y.
    • Simoneau A.
    • Yang H.
    • Levine A.S.
    • Zou L.
    • Chen Z.
    • Lan L.

    cGAS suppresses genomic instability as a decelerator of replication forks.

    Sci. Adv. 2020; 6: eabb8941doi.org/10.1126/sciadv.abb8941

    • Santulli G.
    • Nakashima R.
    • Yuan Q.
    • Marks A.R.

    Intracellular calcium release channels: an update.

    J. Physiol. 2017; 595: 3041-3051doi.org/10.1113/JP272781

    • Rack J.G.M.
    • Palazzo L.
    • Ahel I.

    (ADP-ribosyl)hydrolases: structure, function, and biology.

    Genes Dev. 2020; 34: 263-284doi.org/10.1101/gad.334631.119

    • Perraud A.L.
    • Fleig A.
    • Dunn C.A.
    • Bagley L.A.
    • Launay P.
    • Schmitz C.
    • Stokes A.J.
    • Zhu Q.
    • Bessman M.J.
    • Penner R.
    • et al.

    ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology.

    Nature. 2001; 411: 595-599doi.org/10.1038/35079100

  • TRP channels and pain.

    Annu. Rev. Cell Dev. Biol. 2013; 29: 355-384doi.org/10.1146/annurev-cellbio-101011-155833

  • TRP channels as cellular sensors.

    Nature. 2003; 426: 517-524doi.org/10.1038/nature02196

    • Hofmann T.
    • Chubanov V.
    • Gudermann T.
    • Montell C.

    TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel.

    Curr. Biol. 2003; 13: 1153-1158doi.org/10.1016/s0960-9822(03)00431-7

    • Prawitt D.
    • Monteilh-Zoller M.K.
    • Brixel L.
    • Spangenberg C.
    • Zabel B.
    • Fleig A.
    • Penner R.

    TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i.

    Proc. Natl. Acad. Sci. USA. 2003; 100: 15166-15171doi.org/10.1073/pnas.2334624100

    • Quinet A.
    • Carvajal-Maldonado D.
    • Lemacon D.
    • Vindigni A.

    DNA fiber analysis: mind the gap!.

    Methods Enzymol. 2017; 591: 55-82doi.org/10.1016/bs.mie.2017.03.019

    • Iwata Y.
    • Katanosaka Y.
    • Arai Y.
    • Shigekawa M.
    • Wakabayashi S.

    Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models.

    Hum. Mol. Genet. 2009; 18: 824-834doi.org/10.1093/hmg/ddn408

    • Hisanaga E.
    • Nagasawa M.
    • Ueki K.
    • Kulkarni R.N.
    • Mori M.
    • Kojima I.

    Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.

    Diabetes. 2009; 58: 174-184doi.org/10.2337/db08-0862

    • Henderson M.J.
    • Baldwin H.A.
    • Werley C.A.
    • Boccardo S.
    • Whitaker L.R.
    • Yan X.
    • Holt G.T.
    • Schreiter E.R.
    • Looger L.L.
    • Cohen A.E.
    • et al.

    A low affinity GCaMP3 variant (GCaMPer) for imaging the endoplasmic reticulum calcium store.

    PLoS One. 2015; 10: e0139273doi.org/10.1371/journal.pone.0139273

    • Yang Y.G.
    • Lindahl T.
    • Barnes D.E.

    Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease.

    Cell. 2007; 131: 873-886doi.org/10.1016/j.cell.2007.10.017

    • Grieves J.L.
    • Fye J.M.
    • Harvey S.
    • Grayson J.M.
    • Hollis T.
    • Perrino F.W.

    Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease.

    Proc. Natl. Acad. Sci. USA. 2015; 112: 5117-5122doi.org/10.1073/pnas.1423804112

    • Lama L.
    • Adura C.
    • Xie W.
    • Tomita D.
    • Kamei T.
    • Kuryavyi V.
    • Gogakos T.
    • Steinberg J.I.
    • Miller M.
    • Ramos-Espiritu L.
    • et al.

    Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression.

    Nat. Commun. 2019; 10: 2261doi.org/10.1038/s41467-019-08620-4

    • Vincent J.
    • Adura C.
    • Gao P.
    • Luz A.
    • Lama L.
    • Asano Y.
    • Okamoto R.
    • Imaeda T.
    • Aida J.
    • Rothamel K.
    • et al.

    Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.

    Nat. Commun. 2017; 8: 750doi.org/10.1038/s41467-017-00833-9

  • Molecular mechanisms and cellular functions of cGAS-STING signalling.

    Nat. Rev. Mol. Cell Biol. 2020; 21: 501-521doi.org/10.1038/s41580-020-0244-x

    • Zhang C.
    • Shang G.
    • Gui X.
    • Zhang X.
    • Bai X.C.
    • Chen Z.J.

    Structural basis of STING binding with and phosphorylation by TBK1.

    Nature. 2019; 567: 394-398doi.org/10.1038/s41586-019-1000-2

    • Shang G.
    • Zhang C.
    • Chen Z.J.
    • Bai X.C.
    • Zhang X.

    Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP.

    Nature. 2019; 567: 389-393doi.org/10.1038/s41586-019-0998-5

    • Srikanth S.
    • Woo J.S.
    • Wu B.
    • El-Sherbiny Y.M.
    • Leung J.
    • Chupradit K.
    • Rice L.
    • Seo G.J.
    • Calmettes G.
    • Ramakrishna C.
    • et al.

    The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum.

    Nat. Immunol. 2019; 20: 152-162doi.org/10.1038/s41590-018-0287-8

    • Haag S.M.
    • Gulen M.F.
    • Reymond L.
    • Gibelin A.
    • Abrami L.
    • Decout A.
    • Heymann M.
    • van der Goot F.G.
    • Turcatti G.
    • Behrendt R.
    • Ablasser A.

    Targeting STING with covalent small-molecule inhibitors.

    Nature. 2018; 559: 269-273doi.org/10.1038/s41586-018-0287-8

    • Zhao Z.
    • Ma Z.
    • Wang B.
    • Guan Y.
    • Su X.D.
    • Jiang Z.

    Mn(2+) directly activates cGAS and structural analysis suggests Mn(2+) induces a noncanonical catalytic synthesis of 2’3′-cGAMP.

    Cell Rep. 2020; 32: 108053doi.org/10.1016/j.celrep.2020.108053

    • Bartkova J.
    • Horejsí Z.
    • Koed K.
    • Krämer A.
    • Tort F.
    • Zieger K.
    • Guldberg P.
    • Sehested M.
    • Nesland J.M.
    • Lukas C.
    • et al.

    DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis.

    Nature. 2005; 434: 864-870

    • Bartkova J.
    • Rezaei N.
    • Liontos M.
    • Karakaidos P.
    • Kletsas D.
    • Issaeva N.
    • Vassiliou L.V.
    • Kolettas E.
    • Niforou K.
    • Zoumpourlis V.C.
    • et al.

    Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints.

    Nature. 2006; 444: 633-637doi.org/10.1038/nature05268

    • Di Micco R.
    • Fumagalli M.
    • Cicalese A.
    • Piccinin S.
    • Gasparini P.
    • Luise C.
    • Schurra C.
    • Garre’ M.
    • Nuciforo P.G.
    • Bensimon A.
    • et al.

    Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication.

    Nature. 2006; 444: 638-642doi.org/10.1038/nature05327

    • Bester A.C.
    • Roniger M.
    • Oren Y.S.
    • Im M.M.
    • Sarni D.
    • Chaoat M.
    • Bensimon A.
    • Zamir G.
    • Shewach D.S.
    • Kerem B.

    Nucleotide deficiency promotes genomic instability in early stages of cancer development.

    Cell. 2011; 145: 435-446doi.org/10.1016/j.cell.2011.03.044

    • Jones R.M.
    • Mortusewicz O.
    • Afzal I.
    • Lorvellec M.
    • García P.
    • Helleday T.
    • Petermann E.

    Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress.

    Oncogene. 2013; 32: 3744-3753doi.org/10.1038/onc.2012.387

    • Al Zubaidi T.
    • Gehrisch O.H.F.
    • Genois M.M.
    • Liu Q.
    • Lu S.
    • Kung J.
    • Xie Y.
    • Schuemann J.
    • Lu H.M.
    • Hata A.N.
    • et al.

    Targeting the DNA replication stress phenotype of KRAS mutant cancer cells.

    Sci. Rep. 2021; 11: 3656doi.org/10.1038/s41598-021-83142-y

  • DNA replication and oncogene-induced replicative stress.

    Curr. Biol. 2014; 24: R435-R444doi.org/10.1016/j.cub.2014.04.012

  • Transcriptional activation of short interspersed elements by DNA-damaging agents.

    Genes Chromosomes Cancer. 2001; 30: 64-71

    • Hagan C.R.
    • Sheffield R.F.
    • Rudin C.M.

    Human Alu element retrotransposition induced by genotoxic stress.

    Nat. Genet. 2003; 35: 219-220doi.org/10.1038/ng1259

    • Brégnard C.
    • Guerra J.
    • Déjardin S.
    • Passalacqua F.
    • Benkirane M.
    • Laguette N.

    Upregulated LINE-1 activity in the fanconi anemia cancer susceptibility syndrome leads to spontaneous pro-inflammatory cytokine production.

    EBioMedicine. 2016; 8: 184-194doi.org/10.1016/j.ebiom.2016.05.005

    • Coquel F.
    • Neumayer C.
    • Lin Y.L.
    • Pasero P.

    SAMHD1 and the innate immune response to cytosolic DNA during DNA replication.

    Curr. Opin. Immunol. 2019; 56: 24-30doi.org/10.1016/j.coi.2018.09.017

    • Miller K.N.
    • Victorelli S.G.
    • Salmonowicz H.
    • Dasgupta N.
    • Liu T.
    • Passos J.F.
    • Adams P.D.

    Cytoplasmic DNA: sources, sensing, and role in aging and disease.

    Cell. 2021; 184: 5506-5526doi.org/10.1016/j.cell.2021.09.034

    • Saitoh T.
    • Fujita N.
    • Hayashi T.
    • Takahara K.
    • Satoh T.
    • Lee H.
    • Matsunaga K.
    • Kageyama S.
    • Omori H.
    • Noda T.
    • et al.

    Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response.

    Proc. Natl. Acad. Sci. USA. 2009; 106: 20842-20846doi.org/10.1073/pnas.0911267106

  • STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway.

    Sci. Signal. 2012; 5: ra20doi.org/10.1126/scisignal.2002521

    • Lecona E.
    • Fernandez-Capetillo O.

    Targeting ATR in cancer.

    Nat. Rev. Cancer. 2018; 18: 586-595doi.org/10.1038/s41568-018-0034-3

    • Dhar S.
    • Datta A.
    • Banerjee T.
    • Brosh Jr., R.M.

    Single-molecule DNA fiber analyses to characterize replication fork dynamics in living cells.

    Methods Mol. Biol. 2019; 1999: 307-318doi.org/10.1007/978-1-4939-9500-4_21

    • Lemaçon D.
    • Jackson J.
    • Quinet A.
    • Brickner J.R.
    • Li S.
    • Yazinski S.
    • You Z.
    • Ira G.
    • Zou L.
    • Mosammaparast N.
    • Vindigni A.

    MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells.

    Nat. Commun. 2017; 8: 860doi.org/10.1038/s41467-017-01180-5

    • Olive P.L.
    • Banáth J.P.
    • Durand R.E.

    Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay.

    Radiat. Res. 1990; 122: 86-94

    • Chen T.W.
    • Wardill T.J.
    • Sun Y.
    • Pulver S.R.
    • Renninger S.L.
    • Baohan A.
    • Schreiter E.R.
    • Kerr R.A.
    • Orger M.B.
    • Jayaraman V.
    • et al.

    Ultrasensitive fluorescent proteins for imaging neuronal activity.

    Nature. 2013; 499: 295-300doi.org/10.1038/nature12354

    • Gkika D.
    • Lemonnier L.
    • Shapovalov G.
    • Gordienko D.
    • Poux C.
    • Bernardini M.
    • Bokhobza A.
    • Bidaux G.
    • Degerny C.
    • Verreman K.
    • et al.

    TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity.

    J. Cell Biol. 2015; 208: 89-107doi.org/10.1083/jcb.201402076

  • Detecting protein-protein interactions by Far western blotting.

    Nat. Protoc. 2007; 2: 3278-3284doi.org/10.1038/nprot.2007.459

  • Read more here: Source link