Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea

  • Park JT, Strominger JL. Mode of action of penicillin-biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science. 1957;125:99–101.

    Article 
    CAS 

    Google Scholar
     

  • Yang CC, Leong J. Structure of pseudobactin 7sr1, a siderophore from a plant-deleterious Pseudomonas. Biochemistry. 1984;23:3534–40.

    Article 
    CAS 

    Google Scholar
     

  • Ghuysen JM. Data on the structure of disaccharide-peptide complexes liberated from the wall of Micrococcus lysodeikticus by the action of beta(1-4)N-acetyl-hexosaminidases. Biochim Biophys Acta. 1961;47:561–8.

    Article 
    CAS 

    Google Scholar
     

  • Ashiuchi M, Misono H. Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl Microbiol Biotechnol. 2002;59:9–14.

    Article 
    CAS 

    Google Scholar
     

  • Jorgensen NO, Stepanaukas R, Pedersen AG, Hansen M, Nybroe O. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol Ecol. 2003;46:269–80.

    Article 
    CAS 

    Google Scholar
     

  • Kandler O, Konig H. Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci. 1998;54:305–8.

    Article 
    CAS 

    Google Scholar
     

  • Nagata Y, Tanaka K, Iida T, Kera Y, Yamada R, Nakajima Y, et al. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta 1999;1435:160–6.

    Article 
    CAS 

    Google Scholar
     

  • Jorgensen NOG, Middelboe M. Occurrence and bacterial cycling of D amino acid isomers in an estuarine environment. Biogeochemistry. 2006;81:77–94.

    Article 
    CAS 

    Google Scholar
     

  • Kubota T, Kobayashi T, Nunoura T, Maruyama F, Deguchi S. Enantioselective utilization of D-amino acids by deep-sea microorganisms. Front Microbiol. 2016;7:511.

    Article 

    Google Scholar
     

  • Yu Y, Yang J, Zheng LY, Sheng Q, Li CY, Wang M, et al. Diversity of D-amino acid utilizing bacteria from Kongsfjorden, Arctic and the metabolic pathways for seven D-amino acids. Front Microbiol. 2020;10:2983.

    Article 

    Google Scholar
     

  • Sakai A, Xiang DF, Xu C, Song L, Yew WS, Raushel FM, et al. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids. Biochemistry. 2006;45:4455–62.

    Article 
    CAS 

    Google Scholar
     

  • Uo T, Yoshimura T, Tanaka N, Takegawa K, Esaki N. Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J Bacteriol. 2001;183:2226–33.

    Article 
    CAS 

    Google Scholar
     

  • Moore BC, Leigh JA. Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol. 2005;187:972–9.

    Article 
    CAS 

    Google Scholar
     

  • Troy FA. Chemistry and biosynthesis of the poly(-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. J Biol Chem. 1973;248:316–24.

    Article 
    CAS 

    Google Scholar
     

  • Thorne CB, Gómez CG, Noyes HE, Housewright RD. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol. 1954;68:307.

    Article 
    CAS 

    Google Scholar
     

  • Pedersen AGU, Thomsen TR, Lomstein BA, Jorgensen NOG. Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr. 2001;46:1358–69.

    Article 
    CAS 

    Google Scholar
     

  • Van Heijenoort J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep. 2001;18:503–19.

    Article 

    Google Scholar
     

  • He WQ, Li GQ, Yang CK, Lu CD. Functional characterization of the dguRABC locus for D-Glu and D-Gln utilization in Pseudomonas aeruginosa PAO1. Microbiology. 2014;160:2331–40.

    Article 
    CAS 

    Google Scholar
     

  • Tang BL, Yang J, Chen XL, Wang P, Zhao HL, Su HN, et al. A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nat Commun. 2020;11:285.

    Article 
    CAS 

    Google Scholar
     

  • Yu ZC, Tang BL, Zhao DL, Pang X, Qin QL, Zhou BC, et al. Development of a cold-adapted Pseudoalteromonas expression system for the Pseudoalteromonas proteins intractable for the Escherichia coli system. PLoS ONE. 2015;10:e0137384.

    Article 

    Google Scholar
     

  • Yu ZC, Zhao DL, Ran LY, Mi ZH, Wu ZY, Pang X, et al. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Micro Cell Fact. 2014;13:13.

    Article 

    Google Scholar
     

  • Zhu Y, Zhang P, Lu T, Wang X, Li A, Lu Y, et al. Impact of MtrA on phosphate metabolism genes and the response to altered phosphate conditions in Streptomyces. Environ Microbiol. 2021;23:6907–23.

    Article 
    CAS 

    Google Scholar
     

  • Williams JW, Northrop DB. Kinetic mechanisms of gentamicin acetyltransferase I. Antibiotic-dependent shift from rapid to nonrapid equilibrium random mechanisms. J Biol Chem. 1978;253:5902–7.

    Article 
    CAS 

    Google Scholar
     

  • Noda M, Matoba Y, Kumagai T, Sugiyama M. A novel assay method for an amino acid racemase reaction based on circular dichroism. Biochem J. 2005;389:491–6.

    Article 
    CAS 

    Google Scholar
     

  • Doi E, Shibata D, Matoba T. Modified colorimetric ninhydrin methods for peptidase assay. Anal Biochem. 1981;118:173–84.

    Article 
    CAS 

    Google Scholar
     

  • Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.

    Article 
    CAS 

    Google Scholar
     

  • Cao SN, Zhang WP, Ding W, Wang M, Fan S, Yang B, et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 2020;8:47.

    Article 
    CAS 

    Google Scholar
     

  • Bansal M, Alm E, Kellis M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 2012;28:i283–91.

    Article 
    CAS 

    Google Scholar
     

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC. A large family of bacterial activator proteins. Proc Natl Acad Sci USA. 1988;85:6602–6.

    Article 
    CAS 

    Google Scholar
     

  • Tyrrell R, Verschueren KH, Dodson EJ, Murshudov GN, Addy C, Wilkinson AJ. The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure. 1997;5:1017–32.

    Article 
    CAS 

    Google Scholar
     

  • Liu XX, Liu L, Song X, Wang GQ, Xiong ZQ, Xia YJ, et al. Determination of the regulatory network and function of the LysR-type transcriptional regulator of Lactiplantibacillus plantarum, LpLttR. Micro Cell Fact. 2022;21:65.

    Article 
    CAS 

    Google Scholar
     

  • Eisfeld J, Kraus A, Ronge C, Jagst M, Brandenburg VB, Narberhaus F. A LysR-type transcriptional regulator controls the expression of numerous small RNAs in Agrobacterium tumefaciens. Mol Microbiol. 2021;116:126–39.

    Article 
    CAS 

    Google Scholar
     

  • Liu XX, Xiong ZQ, Wang GQ, Wang LF, Xia YJ, Song X, et al. LysR family regulator LttR controls production of conjugated linoleic acid in Lactobacillus plantarum by directly activating the cla operon. Appl Environ Microbiol. 2021;87:e02798–20.

    Article 
    CAS 

    Google Scholar
     

  • Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci USA. 2001;98:14895–900.

    Article 
    CAS 

    Google Scholar
     

  • Ke Z, Zhou Y, Jiang W, Zhang M, Wang H, Ren Y, et al. McbG, a LysR family transcriptional regulator activates the mcbBCDEF gene cluster involved in the upstream pathway of carbaryl degradation in Pseudomonas sp. XWY-1. Appl Environ Microbiol. 2021;87:e02970–20.

    Article 
    CAS 

    Google Scholar
     

  • Schmidt DMZ, Hubbard BK, Gerlt JA. Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases. Biochemistry. 2001;40:15707–15.

    Article 
    CAS 

    Google Scholar
     

  • Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M, Vandamme P. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol. 2008;58:2726–33.

    Article 
    CAS 

    Google Scholar
     

  • Vetting MW, Hegde SS, Javid-Majd F, Blanchard JS, Roderick SL. Aminoglycoside 2’-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat Struct Biol. 2002;9:653–8.

    Article 
    CAS 

    Google Scholar
     

  • Klein DC. Arylalkylamine N-acetyltransferase: “the timezyme”. J Biol Chem. 2007;282:4233–7.

    Article 
    CAS 

    Google Scholar
     

  • Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem. 1999;274:424–9.

    Article 
    CAS 

    Google Scholar
     

  • Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8:284–95.

    Article 
    CAS 

    Google Scholar
     

  • Forouhar F, Lee IN, Vujcic J, Vujcic S, Shen JW, Vorobiev SM, et al. Structural and functional evidence for Bacillus subtilis PaiA as a novel N-1-spermidine/spermine acetyltransferase. J Biol Chem. 2005;280:40328–36.

    Article 
    CAS 

    Google Scholar
     

  • Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6’)-Ib and its bifunctional, fluoroquinolone-active AAC(6’)-Ib-cr variant. Biochemistry. 2008;47:9825–35.

    Article 
    CAS 

    Google Scholar
     

  • Krtenic B, Drazic A, Arnesen T, Reuter N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Comput Biol. 2020;16:e1007988.

    Article 
    CAS 

    Google Scholar
     

  • Arima J, Isoda Y, Hatanaka T, Mori N. Recombinant production and characterization of an N-acyl-D-amino acid amidohydrolase from Streptomyces sp. 64E6. World J Microbiol Biotechnol. 2013;29:899–906.

    Article 
    CAS 

    Google Scholar
     

  • Tsai YC, Tseng CP, Hsiao KM, Chen LY. Production and purification of D-Aminoacylase from Alcaligenes denitrificans and taxonomic study of the strain. Appl Environ Microbiol. 1988;54:984–9.

    Article 
    CAS 

    Google Scholar
     

  • Mendes MI, Smith DE, Pop A, Lennertz P, Fernandez Ojeda MR, Kanhai WA, et al. Clinically distinct phenotypes of Canavan disease correlate with residual aspartoacylase enzyme activity. Hum Mutat. 2017;38:524–31.

    Article 
    CAS 

    Google Scholar
     

  • Kawakami R, Ohmori T, Sakuraba H, Ohshima T. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids. Amino Acids. 2015;47:1579–87.

    Article 
    CAS 

    Google Scholar
     

  • Matsumoto M, Homma H, Long ZQ, Imai K, Iida T, Maruyama T, et al. Occurrence of free D-amino acids and aspartate racemases in hyperthermophilic archaea. J Bacteriol. 1999;181:6560–3.

    Article 
    CAS 

    Google Scholar
     

  • Kawakami R, Ohshida T, Sakuraba H, Ohshima T. A novel PLP-dependent alanine/serine racemase from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Front Microbiol. 2018;9:1481.

    Article 

    Google Scholar
     

  • Satomura T, Sakuraba H, Suye S, Ohshima T. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology. Appl Microbiol Biotechnol. 2015;99:9337–47.

    Article 
    CAS 

    Google Scholar
     

  • Read more here: Source link