Park JT, Strominger JL. Mode of action of penicillin-biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science. 1957;125:99–101.
Yang CC, Leong J. Structure of pseudobactin 7sr1, a siderophore from a plant-deleterious Pseudomonas. Biochemistry. 1984;23:3534–40.
Ghuysen JM. Data on the structure of disaccharide-peptide complexes liberated from the wall of Micrococcus lysodeikticus by the action of beta(1-4)N-acetyl-hexosaminidases. Biochim Biophys Acta. 1961;47:561–8.
Ashiuchi M, Misono H. Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl Microbiol Biotechnol. 2002;59:9–14.
Jorgensen NO, Stepanaukas R, Pedersen AG, Hansen M, Nybroe O. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol Ecol. 2003;46:269–80.
Kandler O, Konig H. Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci. 1998;54:305–8.
Nagata Y, Tanaka K, Iida T, Kera Y, Yamada R, Nakajima Y, et al. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta 1999;1435:160–6.
Jorgensen NOG, Middelboe M. Occurrence and bacterial cycling of D amino acid isomers in an estuarine environment. Biogeochemistry. 2006;81:77–94.
Kubota T, Kobayashi T, Nunoura T, Maruyama F, Deguchi S. Enantioselective utilization of D-amino acids by deep-sea microorganisms. Front Microbiol. 2016;7:511.
Yu Y, Yang J, Zheng LY, Sheng Q, Li CY, Wang M, et al. Diversity of D-amino acid utilizing bacteria from Kongsfjorden, Arctic and the metabolic pathways for seven D-amino acids. Front Microbiol. 2020;10:2983.
Sakai A, Xiang DF, Xu C, Song L, Yew WS, Raushel FM, et al. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids. Biochemistry. 2006;45:4455–62.
Uo T, Yoshimura T, Tanaka N, Takegawa K, Esaki N. Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J Bacteriol. 2001;183:2226–33.
Moore BC, Leigh JA. Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol. 2005;187:972–9.
Troy FA. Chemistry and biosynthesis of the poly(-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. J Biol Chem. 1973;248:316–24.
Thorne CB, Gómez CG, Noyes HE, Housewright RD. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol. 1954;68:307.
Pedersen AGU, Thomsen TR, Lomstein BA, Jorgensen NOG. Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr. 2001;46:1358–69.
Van Heijenoort J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep. 2001;18:503–19.
He WQ, Li GQ, Yang CK, Lu CD. Functional characterization of the dguRABC locus for D-Glu and D-Gln utilization in Pseudomonas aeruginosa PAO1. Microbiology. 2014;160:2331–40.
Tang BL, Yang J, Chen XL, Wang P, Zhao HL, Su HN, et al. A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nat Commun. 2020;11:285.
Yu ZC, Tang BL, Zhao DL, Pang X, Qin QL, Zhou BC, et al. Development of a cold-adapted Pseudoalteromonas expression system for the Pseudoalteromonas proteins intractable for the Escherichia coli system. PLoS ONE. 2015;10:e0137384.
Yu ZC, Zhao DL, Ran LY, Mi ZH, Wu ZY, Pang X, et al. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Micro Cell Fact. 2014;13:13.
Zhu Y, Zhang P, Lu T, Wang X, Li A, Lu Y, et al. Impact of MtrA on phosphate metabolism genes and the response to altered phosphate conditions in Streptomyces. Environ Microbiol. 2021;23:6907–23.
Williams JW, Northrop DB. Kinetic mechanisms of gentamicin acetyltransferase I. Antibiotic-dependent shift from rapid to nonrapid equilibrium random mechanisms. J Biol Chem. 1978;253:5902–7.
Noda M, Matoba Y, Kumagai T, Sugiyama M. A novel assay method for an amino acid racemase reaction based on circular dichroism. Biochem J. 2005;389:491–6.
Doi E, Shibata D, Matoba T. Modified colorimetric ninhydrin methods for peptidase assay. Anal Biochem. 1981;118:173–84.
Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.
Cao SN, Zhang WP, Ding W, Wang M, Fan S, Yang B, et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 2020;8:47.
Bansal M, Alm E, Kellis M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 2012;28:i283–91.
Henikoff S, Haughn GW, Calvo JM, Wallace JC. A large family of bacterial activator proteins. Proc Natl Acad Sci USA. 1988;85:6602–6.
Tyrrell R, Verschueren KH, Dodson EJ, Murshudov GN, Addy C, Wilkinson AJ. The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure. 1997;5:1017–32.
Liu XX, Liu L, Song X, Wang GQ, Xiong ZQ, Xia YJ, et al. Determination of the regulatory network and function of the LysR-type transcriptional regulator of Lactiplantibacillus plantarum, LpLttR. Micro Cell Fact. 2022;21:65.
Eisfeld J, Kraus A, Ronge C, Jagst M, Brandenburg VB, Narberhaus F. A LysR-type transcriptional regulator controls the expression of numerous small RNAs in Agrobacterium tumefaciens. Mol Microbiol. 2021;116:126–39.
Liu XX, Xiong ZQ, Wang GQ, Wang LF, Xia YJ, Song X, et al. LysR family regulator LttR controls production of conjugated linoleic acid in Lactobacillus plantarum by directly activating the cla operon. Appl Environ Microbiol. 2021;87:e02798–20.
Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci USA. 2001;98:14895–900.
Ke Z, Zhou Y, Jiang W, Zhang M, Wang H, Ren Y, et al. McbG, a LysR family transcriptional regulator activates the mcbBCDEF gene cluster involved in the upstream pathway of carbaryl degradation in Pseudomonas sp. XWY-1. Appl Environ Microbiol. 2021;87:e02970–20.
Schmidt DMZ, Hubbard BK, Gerlt JA. Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases. Biochemistry. 2001;40:15707–15.
Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M, Vandamme P. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol. 2008;58:2726–33.
Vetting MW, Hegde SS, Javid-Majd F, Blanchard JS, Roderick SL. Aminoglycoside 2’-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat Struct Biol. 2002;9:653–8.
Klein DC. Arylalkylamine N-acetyltransferase: “the timezyme”. J Biol Chem. 2007;282:4233–7.
Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem. 1999;274:424–9.
Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8:284–95.
Forouhar F, Lee IN, Vujcic J, Vujcic S, Shen JW, Vorobiev SM, et al. Structural and functional evidence for Bacillus subtilis PaiA as a novel N-1-spermidine/spermine acetyltransferase. J Biol Chem. 2005;280:40328–36.
Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6’)-Ib and its bifunctional, fluoroquinolone-active AAC(6’)-Ib-cr variant. Biochemistry. 2008;47:9825–35.
Krtenic B, Drazic A, Arnesen T, Reuter N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Comput Biol. 2020;16:e1007988.
Arima J, Isoda Y, Hatanaka T, Mori N. Recombinant production and characterization of an N-acyl-D-amino acid amidohydrolase from Streptomyces sp. 64E6. World J Microbiol Biotechnol. 2013;29:899–906.
Tsai YC, Tseng CP, Hsiao KM, Chen LY. Production and purification of D-Aminoacylase from Alcaligenes denitrificans and taxonomic study of the strain. Appl Environ Microbiol. 1988;54:984–9.
Mendes MI, Smith DE, Pop A, Lennertz P, Fernandez Ojeda MR, Kanhai WA, et al. Clinically distinct phenotypes of Canavan disease correlate with residual aspartoacylase enzyme activity. Hum Mutat. 2017;38:524–31.
Kawakami R, Ohmori T, Sakuraba H, Ohshima T. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids. Amino Acids. 2015;47:1579–87.
Matsumoto M, Homma H, Long ZQ, Imai K, Iida T, Maruyama T, et al. Occurrence of free D-amino acids and aspartate racemases in hyperthermophilic archaea. J Bacteriol. 1999;181:6560–3.
Kawakami R, Ohshida T, Sakuraba H, Ohshima T. A novel PLP-dependent alanine/serine racemase from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Front Microbiol. 2018;9:1481.
Satomura T, Sakuraba H, Suye S, Ohshima T. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology. Appl Microbiol Biotechnol. 2015;99:9337–47.
Read more here: Source link