Species richness of bat flies and their associations with host bats in a subtropical East Asian region | Parasites & Vectors

  • Scott M, Dobson A. The role of parasites in regulating host abundance. Parasitol Today. 1989;5:176–83.

    CAS 

    Google Scholar
     

  • Tompkins D, Dobson A, Arneberg P, Begon M, Cattadori I, Greenman J, et al. Parasites and host population dynamics. The ecology of wildlife diseases. 2002; 45–62.

  • Thomas F, Poulin R, Brodeur J. Host manipulation by parasites: a multidimensional phenomenon. Oikos. 2010;119:1217–23.


    Google Scholar
     

  • Reeves WK, Lloyd JE. Louse flies, keds, and bat flies (Hippoboscoidea). Medical and veterinary entomology. Amsterdam: Elsevier; 2019. p. 421–38.


    Google Scholar
     

  • Poinar G, Brown A. The first fossil streblid bat fly, Enischnomyia stegosoma ng, n. sp. (Diptera: Hippoboscoidea: Streblidae). Syst Parasitol. 2012;81:79–86.


    Google Scholar
     

  • Haelewaters D, Hiller T, Dick CW. Bats, bat flies, and fungi: a case of hyperparasitism. Trends Parasitol. 2018;34:784–99.


    Google Scholar
     

  • Graciolli G, Dick C. Checklist of world Nycteribiidae (Diptera: Hippoboscoidea). 2008.

  • Dick C, Graciolli G. Checklist of world Streblidae (Diptera: Hippoboscoidea). 2009.

  • Dittmar K, Porter ML, Murray S, Whiting MF. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. Mol Phylogenet Evol. 2006;38:155–70.

    CAS 

    Google Scholar
     

  • Dick CW, Patterson BD. Bat flies: obligate ectoparasites of bats. Micromammals and macroparasites. Berlin: Springer; 2006. p. 179–94.


    Google Scholar
     

  • Ter Hofstede HM, Fenton MB. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J Zool. 2005;266:333–40.


    Google Scholar
     

  • Patterson BD, Dick CW, Dittmar K. Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J Trop Ecol. 2007;23:177–89.


    Google Scholar
     

  • Hiller T, Vollstädt MG, Brändel SD, Page RA, Tschapka M. Bat–bat fly interactions in Central Panama: host traits relate to modularity in a highly specialised network. Insect Conserv Divers. 2021;14:686–99.


    Google Scholar
     

  • Fagundes R, Antonini Y, Aguiar LM. Overlap in cave usage and period of activity as factors structuring the interactions between bats and ectoparasites. Zool Stud. 2017;56:e22.


    Google Scholar
     

  • Szentiványi T, Vincze O, Estók P. Density-dependent sex ratio and sex-specific preference for host traits in parasitic bat flies. Parasit Vectors. 2017;10:1–9.


    Google Scholar
     

  • Patrício PMP, Lourenço EC, Freitas AQD, Famadas KM. Host morphophysiological conditions and environment abiotic factors correlate with bat flies (Streblidae) prevalence and intensity in Artibeus Leach, 1821 (Phyllostomidae). Ciência Rural. 2016;46:648–53.


    Google Scholar
     

  • Lee VN, Mendenhall IH, Lee BP-H, Posa MRC. Parasitism by bat flies on an urban population of Cynopterus brachyotis in Singapore. Acta Chiropterologica. 2018;20:177–85.


    Google Scholar
     

  • Dick CW, Patterson BD. Against all odds: explaining high host specificity in dispersal-prone parasites. Int J Parasitol. 2007;37:871–6.


    Google Scholar
     

  • Reckardt K, Kerth G. Does the mode of transmission between hosts affect the host choice strategies of parasites? Implications from a field study on bat fly and wing mite infestation of Bechstein’s bats. Oikos. 2009;118:183–90.


    Google Scholar
     

  • Zarazúa-Carbajal M, Saldaña-Vázquez RA, Sandoval-Ruiz CA, Stoner KE, Benitez-Malvido J. The specificity of host-bat fly interaction networks across vegetation and seasonal variation. Parasitol Res. 2016;115:4037–44.


    Google Scholar
     

  • Dick CW. High host specificity of obligate ectoparasites. Ecol Entomol. 2007;32:446–50.


    Google Scholar
     

  • Patterson BD, Dick CW, Dittmar K. Nested distributions of bat flies (Diptera: Streblidae) on Neotropical bats: artifact and specificity in host-parasite studies. Ecography. 2009;32:481–7.


    Google Scholar
     

  • Ter Hofstede HM, Fenton MB, Whitaker J, John O. Host and host-site specificity of bat flies (Diptera: Streblidae and Nycteribiidae) on Neotropical bats (Chiroptera). Can J Zool. 2004;82:616–26.


    Google Scholar
     

  • Wang X, Zhou R, Lu L, Wang C, Liu Q. A New Record of Ornithoica aequisenta and an Updated Checklist of Hippoboscidae, Nycteribiidae, and Streblidae in China. J Med Entomol. 2022;59:1071–5.


    Google Scholar
     

  • Satô M, Mogi M. A new species of Phthiridium (Diptera: Nycteribiidae) from Iriomote Island, the Ryukyu Islands, Japan, with a key to nycteribiid bat flies of Japan. Med Entomol Zool. 2015;66:1–6.


    Google Scholar
     

  • Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003;300:1961–6.

    CAS 

    Google Scholar
     

  • Tian H, Liu Y, Li Y, Wu C-H, Chen B, Kraemer MU, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science. 2020;368:638–42.

    CAS 

    Google Scholar
     

  • Brook CE, Dobson AP. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015;23:172–80.

    CAS 

    Google Scholar
     

  • Dick CW, Dittmar K. Parasitic bat flies (Diptera: Streblidae and Nycteribiidae): host specificity and potential as vectors. In: Klimpel S, Mehlhorn H, editors. Bats (Chiroptera) as vectors of diseases and parasites. Berlin: Springer; 2014. p. 131–55.


    Google Scholar
     

  • Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, et al. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol. 2012;12:1717–23.


    Google Scholar
     

  • Jobling B. A revision of the genus Raymondia Frauenfeld (Diptera pupipara, Streblidae). Parasitology. 1930;22:283–301.


    Google Scholar
     

  • Jobling B. A record of the Streblidae from the Philippines and other Pacific Islands, including morphology of the abdomen, host-parasite relationship and geographical distribution, and with descriptions of five new species (Diptera). Trans Royal Entomol Soc Lond. 1951;102:211–46.


    Google Scholar
     

  • Theodor O. Illustrated catalogue of the Rothschild collection of Nycteribiidae (Diptera) in the British Museum (Natural History); with keys and short descriptions for the identification of subfamilies, genera, species and subspecies. London and Tonbridge: The Whitefriars Press Ltd. 1967.

  • Theodor O. Philippine batflies of the family Nycteribiidae (Diptera: Pupipara). 1963.

  • Cardoso P, Erwin TL, Borges PA, New TR. The seven impediments in invertebrate conservation and how to overcome them. Biol Cons. 2011;144:2647–55.


    Google Scholar
     

  • Brito D. Overcoming the Linnean shortfall: data deficiency and biological survey priorities. Basic Appl Ecol. 2010;11:709–13.


    Google Scholar
     

  • Pejić B, Budinski I, van Schaik J, Blagojević J. Sharing roosts but not ectoparasites: high host-specificity in bat flies and wing mites of Miniopterus schreibersii and Rhinolophus ferrumequinum (Mammalia: Chiroptera). Curr Zool. 2021. doi.org/10.1093/cz/zoab086.

    Article 

    Google Scholar
     

  • Hong Kong Biodiversity Information Hub. Agriculture, Fisheries and Conservation Department, Hong Kong. 2022. bih.gov.hk/tc/hong-kong-species/mammals/index.html. Accessed 6 Oct 2022.

  • Shek CT. Field guide to the terrestrial mammals of Hong Kong. Hong Kong: Cosmos Books; 2006.


    Google Scholar
     

  • Kunz T, Parsons S. Ecological and behavioral methods for the study of bats. Baltimore: Johns Hopkins University Press; 2009.


    Google Scholar
     

  • Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.


    Google Scholar
     

  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

    CAS 

    Google Scholar
     

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    CAS 

    Google Scholar
     

  • Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS 

    Google Scholar
     

  • Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.

    CAS 

    Google Scholar
     

  • Rambaut A. FigTree v1.4.4, a graphical viewer of phylogenetic trees. 2018. tree.bio.ed.ac.uk/software/figtree/. Accessed 3 Aug 2022.

  • Hebert PD, Ratnasingham S, De Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Royal Soc London Ser B Biol Sci. 2003;270:S96–9.

    CAS 

    Google Scholar
     

  • Dick CW, Gettinger D. A faunal survey of streblid flies (Diptera: Streblidae) associated with bats in Paraguay. J Parasitol. 2005;91:1015–24.


    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.


    Google Scholar
     

  • FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom. 2010. www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 21 Sep 2022.

  • Chevreux B, Wetter T, Suhai S, editors. Genome sequence assembly using trace signals and additional sequence information. German conference on bioinformatics. Princeton: Citeseer; 1999.


    Google Scholar
     

  • Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41:e129.

    CAS 

    Google Scholar
     

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9.


    Google Scholar
     

  • Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45:W6–11.

    CAS 

    Google Scholar
     

  • Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59–64.

    CAS 

    Google Scholar
     

  • Li X, Wang Y, Su S, Yang D. The complete mitochondrial genomes of Musca domestica and Scathophaga stercoraria (Diptera: Muscoidea: Muscidae and Scathophagidae). Mitochondrial DNA Part A. 2016;27:1435–6.

    CAS 

    Google Scholar
     

  • Trevisan B, Alcantara DM, Machado DJ, Marques FP, Lahr DJ. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ. 2019;7:e7543.


    Google Scholar
     

  • Brown AM, Speer KA, Teixeira T, Clare E, Simmons NB, Balbuena JA, et al. Phylogenetic and ecological trends in specialization: disentangling the drivers of ectoparasite host specificity. doi.org/10.1101/2022.04.06.487338.

  • Nikoh N, Kondo N, Fukatsu T. Phylogenetic comparison between nycteribiid bat flies and their host bats. Med Entomol Zool. 2011;62:185–94.


    Google Scholar
     

  • Graciolli G, de Carvalho CJ. Do fly parasites of bats and their hosts coevolve? Speciation in Trichobius phyllostomae group (Diptera, Streblidae) and their hosts (Chiroptera, Phyllostomidae) suggests that they do not. Revista Brasileira de Entomologia. 2012;56:436–50.


    Google Scholar
     

  • Amador LI, Moyers Arévalo RL, Almeida FC, Catalano SA, Giannini NP. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J Mamm Evol. 2018;25:37–70.


    Google Scholar
     

  • Azhar I, Khan FAA, Ismail N, Abdullah M. Checklist of bat flies (Diptera: Nycteribiidae and Streblidae) and their associated bat hosts in Malaysia. Check List. 2015;11:1777.


    Google Scholar
     

  • Samoh A, Pantip V, Soisook P. A checklist of Nycteribiid and Streblid Bat Flies (Diptera: Nycteribiidae and Streblidae) from Thailand with thirteen new records for the country. Trop Nat Hist. 2021;21:244–62.


    Google Scholar
     

  • Presley SJ. Ectoparasitic assemblages of Paraguayan bats: ecological and evolutionary perspectives. Lubbock: Texas Tech University; 2004.


    Google Scholar
     

  • Wenzel RL, Tipton VJ. Some relationships between mammal hosts and their ectoparasites. In: Wenzel RL, Tipton VJ, editors. Ectoparasites of Panama. Chicago: Field Museum of Natural History; 1966. p. 405–675.


    Google Scholar
     

  • Obdianela MCN, Guanlao M, Samaniego EVE, Pornobi KO. Prevalence and host specificity of bat flies (Streblidae) from selected caves in Unisan, Quezon. Philippines Acta Parasitologica. 2021;66:983–8.


    Google Scholar
     

  • Alvarez JD, Lit IL, Alviola PA, Cosico EA, Eres EG. A contribution to the ectoparasite fauna of bats (Mammalia: Chiroptera) in Mindoro Island, Philippines: I. Blood sucking Diptera (Nycteribiidae, Streblidae) and Siphonaptera (Ischnopsyllidae). Int J Trop Insect Sci. 2016;36:188–94.


    Google Scholar
     

  • Maa T. A synopsis of Diptera Pupipara of Japan. Pac Insects. 1967;9:727–60.


    Google Scholar
     

  • Zhang D, Li XY, Pei WY. Species catalogue of China, volume 2. Animals. Insecta (VII). Diptera (3): Cyclorrhaphous Brachycera (I). Beijing: Science Press; 2020.


    Google Scholar
     

  • Maa T. Records and descriptions of Nycteribiidae and Streblidae (Diptera). Pacific Insects. 1962;4:417–36.


    Google Scholar
     

  • Hill JE, McNeely JA. The Bats and Bat’s Parasites of Thailand. Applied Scientific Research Corporation of Thailand Bangkok; 1975.

  • Han HJ, Li ZM, Li X, Liu JX, Peng QM, Wang R, et al. Bats and their ectoparasites (Nycteribiidae and Spinturnicidae) carry diverse novel Bartonella genotypes, China. Transboundary Emerg Dis. 2022;69:e845–58.

    CAS 

    Google Scholar
     

  • Sceffler I, Dolch D, Ariunbold J, Batsikhan N, Abraham A, Thiele K. Ectoparasites of bats in Mongolia (Ischnopsyllidae, Nycteribiidae, Cimicidae and Spinturnicidae). Erforsch. Biol. Ress. Mongolei (Halle/Saale). 2010; 11:367-81.

  • Nabeshima K, Sato S, Kabeya H, Komine N, Nanashima R, Takano A, et al. Detection and phylogenetic analysis of Bartonella species from bat flies on eastern bent-wing bats (Miniopterus fuliginosus) in Japan. Comp Immunol Microbiol Infect Dis. 2020;73:101570.


    Google Scholar
     

  • Tai YL, Lee Y-F, Kuo Y-M, Kuo Y-J. Effects of host state and body condition on parasite infestation of bent-wing bats. Front Zool. 2022;19:1–13.


    Google Scholar
     

  • Lee H, Seo M-G, Lee S-H, Oem J-K, Kim S-H, Jeong H, et al. Relationship among bats, parasitic bat flies, and associated pathogens in Korea. Parasit Vectors. 2021;14:1–11.

    CAS 

    Google Scholar
     

  • The IUCN Red List of Threatened Species. Version 2022-1. IUCN Global Species Programme Red List Unit, Cambridge, United Kingdom. 2022. www.iucnredlist.org. Accessed 24 Sep 2022.

  • Amarga AKS, Alviola PA, Lit IL Jr, Yap SA. Checklist of ectoparasitic arthropods among cave-dwelling bats from Marinduque Island, Philippines. Check List. 2017;13:2029.


    Google Scholar
     

  • Kim HC, Han SH, Dick CW, Choi YG, Chong ST, Klein TA, et al. Geographical distribution of bat flies (Diptera: Nycteribiidae and Streblidae), including two new records, Nycteribia allotopa and N. formosana, collected from bats (Chiroptera: Rhinolophidae and Vespertilionidae) in the Republic of Korea. J Vector Ecol. 2012;37:333–7.


    Google Scholar
     

  • Satô M, Mogi M. Records of some blood-sucking flies from birds and bats of Japan (Diptera: Hippoboscidae, Nycteribiidae and Streblidae). Rishiri Stud. 2008;27:41–8.


    Google Scholar
     

  • Hosokawa T, Nikoh N, Koga R, Satô M, Masahiko T, Meng X-Y, et al. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J. 2012;6:577–87.

    CAS 

    Google Scholar
     

  • Tortosa P, Dsouli N, Gomard Y, Ramasindrazana B, Dick CW, Goodman SM. Evolutionary history of Indian Ocean nycteribiid bat flies mirroring the ecology of their hosts. PLoS ONE. 2013;8:75215.


    Google Scholar
     

  • Maa T-c. Genera and species of Hippoboscidae (Diptera): types, synonymy, habitats and natural groupings. Pac Insects Monogr. 1963;6:1–186.


    Google Scholar
     

  • Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PD. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci. 2006;103:3657–62.

    CAS 

    Google Scholar
     

  • Whiteman NK, Sánchez P, Merkel J, Klompen H, Parker PG. Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. J Parasitol. 2006;92:1218–28.

    CAS 

    Google Scholar
     

  • Read more here: Source link