Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep | BMC Genomics

  • Zhao E, Yu Q, Zhang N, Kong D, Zhao Y. Mitochondrial DNA diversity and the origin of Chinese indigenous sheep. Trop Anim Health Prod. 2013;45(8):1715-22.

  • Liu J, Ding X, Zeng Y, Yue Y, Guo X, Guo T, et al. Genetic diversity and phylogenetic evolution of Tibetan sheep based on mtDNA D-loop sequences. PLoS One. 2016;11(7):e0159308.

    Article 

    Google Scholar
     

  • Chessa B, Pereira F, Arnaud F, Amorim A, Goyache F, Mainland I, et al. Revealing the history of sheep domestication using retrovirus integrations. Science (New York, NY). 2009;324(5926):532–6.

  • Hu XJ, Yang J, Xie XL, Lv FH, Cao YH, Li WR, et al. The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan plateau. Mol Biol Evol. 2019;36(2):283–303.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Li W, Lv F, He S, Tian S, Peng W, et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol Biol Evol. 2016;33(10):2576–92.

  • Nosrati M, Asadollahpour Nanaei H, Amiri Ghanatsaman Z, Esmailizadeh A. Whole genome sequence analysis to detect signatures of positive selection for high fecundity in sheep. Reprod Domest Anim. 2019;54(2):358–64.

  • Li X, Yang J, Shen M, Xie X, Liu G, Xu Y, et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat Commun. 2020;11(1):2815.

    Article 
    CAS 

    Google Scholar
     

  • Cao Y, Xu S, Shen M, Chen Z, Gao L, Lv F, et al. Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Mol Biol Evol. 2021;38(3):838–55.

  • Zhang Y, Xue X, Liu Y, Abied A, Ding Y, Zhao S, et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and poll Dorset sheep. Sci Rep. 2021;11(1):2466.

    Article 
    CAS 

    Google Scholar
     

  • Liu JB, Guo J, Wang F, Yue YJ, Zhang WL, Feng RL, et al. Carcass and meat quality characteristics of Oula lambs in China. Small Rumin Res. 2015;123(2–3):251–9.

  • Guo X, Liu JB, Zeng YF, Ding XZ, Bao PJ, Yan P, Pei J. Study on complete mitochondrial genome of Oula sheep (Ovis aries). Agric Sci Technol. 2017;18(08):1365-66.

  • Zhang L, Mousel M, Wu X, Michal J, Zhou X, Ding B, et al. Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep. PLoS One. 2013;8(6):e65942.

    Article 
    CAS 

    Google Scholar
     

  • Akey J, Zhang G, Zhang K, Jin L, Shriver M. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002;12(12):1805–14.

  • Chen Z, Xu Y, Xie X, Wang D, Aguilar-Gómez D, Liu G, et al. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol. 2021;4(1):1307.

    Article 
    CAS 

    Google Scholar
     

  • Alshawi A, Essa A, Al-Bayatti S, Hanotte O. Genome analysis reveals genetic admixture and signature of selection for productivity and environmental traits in Iraqi cattle. Front Genet. 2019;10:609.

    Article 
    CAS 

    Google Scholar
     

  • Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, et al. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 2012;22(4):778.

    Article 
    CAS 

    Google Scholar
     

  • Zhangyuan P, Xiaoyun H, Xiangyu W, Xiaofei G, Mingxing C. Selection signature in domesticated animals. Hereditas. 2016;38(12):1069.


    Google Scholar
     

  • Naval-Sánchez M, Porto-Neto L, Cardoso D, Hayes B, Daetwyler H, Kijas J, et al. Selection signatures in tropical cattle are enriched for promoter and coding regions and reveal missense mutations in the damage response gene HELB. Genet Sel Evol. 2020;52(1):27.

    Article 

    Google Scholar
     

  • Ai H, Yang B, Li J, Xie X, Chen H, Ren J. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics. 2014;15:834.

    Article 

    Google Scholar
     

  • Wang M, Li Y, Peng M, Zhong L, Wang Z, Li Q, et al. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol Biol Evol. 2015;32(7):1880–9.

  • Wei C, Wang H, Liu G, Zhao F, Kijas J, Ma Y, et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep. 2016;6:26770.

    Article 
    CAS 

    Google Scholar
     

  • Bertolini F, Servin B, Talenti A, Rochat E, Kim E, Oget C, et al. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet Sel Evol. 2018;50(1):57.

    Article 

    Google Scholar
     

  • Hornyak T, Jiang S, Guzmán E, Scissors B, Tuchinda C, He H, et al. Mitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiation. Pigment Cell Melanoma Res. 2009;22(3):307–18.

  • Megdiche S, Mastrangelo S, Hamouda MB, Lenstra JA, Ciani E. Merino and merino-derived sheep breeds: a further look at genome-wide selection signatures for wool traits. Front Genet. 2019;10:1025–39.

  • Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics (Oxford, England). 2009;25(14):1754–60.

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

  • Petr D, Adam A, Goncalo A, Albers CA, Eric B. The variant call format and VCFtools. Bioinformatics (Oxford, England). 2011;27(15):2156–8.

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

  • Kai W, Li M, Hakon H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;16:e164.


    Google Scholar
     

  • Mastrangelo S, Ciani E, Sardina M, Sottile G, Pilla F, Portolano B. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Anim Genet. 2018;49(1):71–81.

    Article 
    CAS 

    Google Scholar
     

  • Mastrangelo S, Sardina M, Tolone M, Di Gerlando R, Sutera A, Fontanesi L, et al. Genome-wide identification of runs of homozygosity islands and associated genes in local dairy cattle breeds. Animal. 2018;12(12):2480–8.

  • Terhorst J, Kamm J, Song Y. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49(2):303–9.

  • Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England). 2005;21(2):263–5.

  • Tang H, Peng J, Wang P, Risch N. Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol. 2005;28(4):289–301.

    Article 

    Google Scholar
     

  • Paradis E, Claude J, Strimmer K. APE: analyses of Phylogenetics and evolution in R language. Bioinforma. 2004;20(2):289–90.

  • Pfeifer B, Wittelsbürger U, Onsins S, Lercher MJ. PopGenome: an efficient Swiss Army knife for population genomic analyses in R. Mol Biol Evol. 2014;31(7):1929–36.

  • Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell. 2016;166(6):1397–1410.e1316.

    Article 
    CAS 

    Google Scholar
     

  • Hudson R, Slatkin M, Maddison W. Estimation of levels of gene flow from DNA sequence data. Genet. 1992;132(2):583–9.

  • Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979;76(10):5269–73.

  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet. 1989;123(3):585–95.

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46(11):1220–6.

  • Andolfo I, Martone S, Rosato B, Marra R, Gambale A, Forni G, et al. Complex modes of inheritance in hereditary red blood cell disorders: a case series study of 155 patients. Genes. 2021;12(7):958.

    Article 
    CAS 

    Google Scholar
     

  • Hou Y, Li C, Palaniyandi K, Magtibay P, Homolya L, Sarkadi B, et al. Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport. Biochem. 2009;48(38):9122–31.

  • Schmidt E, Damarla M, Rentsendorj O, Servinsky L, Zhu B, Moldobaeva A, et al. Soluble guanylyl cyclase contributes to ventilator-induced lung injury in mice. Am J Phys Lung Cell Mol Phys. 2008;295(6):L1056–65.

  • Seifi Moroudi R, Ansari Mahyari S, Vaez Torshizi R, Lanjanian H, Masoudi-Nejad A. Identification of new genes and quantitative trait locis associated with growth curve parameters in F2 chicken population using genome-wide association study. Anim Genet. 2021;52(2):171–84.

  • Lim W, Jeong W, Kim J, Ka H, Bazer F, Han J, et al. Differential expression of secreted phosphoprotein 1 in response to estradiol-17β and in ovarian tumors in chickens. Biochem Biophys Res Commun. 2012;422(3):494–500.

    Article 
    CAS 

    Google Scholar
     

  • La Y, Zhang X, Li F, Zhang D, Wang W. Molecular characterization and expression of SPP1, LAP3 and LCORL and their association with growth traits in sheep. Genes. 2019;10(8):616.

    Article 
    CAS 

    Google Scholar
     

  • Roy FV, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–88.

  • Getachew T, Haile A, Mészáros G, Rischkowsky B, Slkner J. Genetic diversity, population structure and runs of homozygosity in Ethiopian short fat-tailed and Awassi sheep breeds using genome-wide 50k SNP markers. Livest Sci. 2019;232:103899.

    Article 

    Google Scholar
     

  • Wei C, Wang H, Liu G, Wu M, Cao J, Liu Z, et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics. 2015;16:194.

    Article 

    Google Scholar
     

  • Lv F, Cao Y, Liu G, Luo L, Lu R, Liu M, et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and Agronomically important loci. Mol Biol Evol. 2022;39(2):353.

    Article 

    Google Scholar
     

  • Pan Z, Li S, Liu Q, Wang Z, Zhou Z, Di R, et al. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. GigaScience. 2018;7(4):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Bjelland DW, Weigel KA, Vukasinovic N, Nkrumah JD. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. J Dairy Sci. 2013;96(7):4697–706.

    Article 
    CAS 

    Google Scholar
     

  • Szmato AT, Gurgul A, Ropka-Molik K, Jasielczuk I, ZaBek T, Bugno-Poniewierska M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livest Sci. 2016;188:72–80.

  • Purfield D, Berry D, McParland S, Bradley D. Runs of homozygosity and population history in cattle. BMC Genet. 2012;13:70.

    Article 
    CAS 

    Google Scholar
     

  • Mastrangelo S, Di Gerlando R, Tolone M, Tortorici L, Sardina M, Portolano B. Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC Genet. 2014;15(1):1–10.

    Article 

    Google Scholar
     

  • Abied A, Xu L, Sahlu BW, Xing F, Ma Y. Genome-wide analysis revealed homozygosity and demographic history of five Chinese sheep breeds adapted to different environments. Genes. 2020;11(12):1480.

    Article 
    CAS 

    Google Scholar
     

  • Zhao F, Wang G, Zeng T, Wei C, Zhang L, Wang H, et al. Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livest Sci. 2014;170:22–9.

  • Naval-Sanchez M, Nguyen Q, McWilliam S, Porto-Neto L, Tellam R, Vuocolo T, et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat Commun. 2018;9(1):859.

    Article 

    Google Scholar
     

  • Hunter P. The genetics of domestication: research into the domestication of livestock and companion animals sheds light both on their “evolution” and human history. EMBO Rep. 2018;19(2):201–5.

  • Yang P, Wang K, Zhang C, Wang Z, Liu Q, Wang J, et al. Novel roles of VAT1 expression in the immunosuppressive action of diffuse gliomas. Cancer Immunol Immunother. 2021;70(9):2589–600.

  • MiR-146b-5p targets IFI35 to inhibit inflammatory response and apoptosis via JAK1/STAT1 signalling in lipopolysaccharide-induced glomerular cells. Autoimmunity 2021, 54(7):430–438.

  • Dunkel J, Aguilar-Pimentel JA, Ollert M, Fuchs H, Gailus-Durner V, Angelis M, et al. Endothelial amine oxidase AOC3 transiently contributes to adaptive immune responses in the airways. Eur J Immunol. 2014;44(11):3232-9.

  • Saravanaperumal SA, LaTerza R, Pediconi D. Alternative splicing of the sheep MITF gene: novel transcripts detectable in skin. Gene. 2014;552(1):165–75.

  • Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene. 2012;31(19):2461–70.

  • Yang S, Zhang J, Ji K, Jiao D, Fan R, Dong C. Characterization and expression of soluble guanylate cyclase in skins and melanocytes of sheep. Acta Histochem. 2016;118(3):219–24.

  • Han JL, Yang M, Guo TT, Yue YJ, Liu JB, Niu CE, et al. Molecular characterization of two candidate genes associated with coat color in Tibetan sheep (Ovis arise). Agric Sci China. 2015;7:8.


    Google Scholar
     

  • Makino T, Mizawa M, Yoshihisa Y, Shimizu T. 136 the expression of trichohyalin-like 1 protein in human skin xenotransplants is enhanced by ultraviolet B irradiation. J Investig Dermatol. 2017;137(10):S216.

    Article 

    Google Scholar
     

  • Makino T, Mizawa M, Yoshihisa Y, Yamamoto S, Shimizu T. Trichohyalin-like 1 protein plays a crucial role in proliferation and anti-apoptosis of normal human keratinocytes and squamous cell carcinoma cells. Cell Death Dis. 2020;6(1):109.

    Article 
    CAS 

    Google Scholar
     

  • Du L-X. Animal genetic resources in China. Beijing: China Agriculture Press; 2011.


    Google Scholar
     

  • Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJ. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinol. 1996;4:1447–56.

  • Chun SY, Billig H, Tilly JL, Furuta I, Tsafriri A, Hsueh AJ. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology. 1994;5:1845.

    Article 

    Google Scholar
     

  • Sakurai M, Ohtake J, Ishikawa T, Tanemura K, Hoshino Y, Arima T, et al. Distribution and Y397 phosphorylation of focal adhesion kinase on follicular development in the mouse ovary. Cell Tissue Res. 2012;347(2):457–65.

  • Boruah P, Shabbir S, Kulyar F. Genome-wide transcriptome profiling uncovers differential miRNAs and lncRNAs in ovaries of Hu sheep at different developmental stages. Sci Rep. 2021;11(1):5865.

    Article 

    Google Scholar
     

  • Cheng J, Zhao H, Chen N, Cao X, Chen H. Population structure, genetic diversity, and selective signature of Chaka sheep revealed by whole genome sequencing. BMC Genomics. 2020;21:520.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, McKinsey T, Olson E. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A. 2001;98(13):7354–9.

  • Haberland M, Arnold MA, McAnally J, Phan D, Kim Y. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol Cell Biol. 2007;27(2):518–25.

  • Nakagawa O, Arnold M, Nakagawa M, Hamada H, Shelton J, Kusano H, et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 2005;19(17):2066–77.

  • Read more here: Source link