Nexus between genome-wide copy number variations and autism spectrum disorder in Northeast Han Chinese population | BMC Psychiatry

  • WHO. Autism spectrum disorders and other developmental disorders: From raising awareness to building capacity. Geneva: World Health Organization; 2013.


    Google Scholar
     

  • Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 2015;350:6263.

  • Kim JY, Son MJ, Son CY, Radua J, Eisenhut M, Gressier F, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6:590–600.


    Google Scholar
     

  • Xu Q, Liu YY, Wang X, Tan GH, Li HP, Hulbert SW, et al. Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol Autism. 2018;9:65.

    CAS 

    Google Scholar
     

  • Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147:235–46.


    Google Scholar
     

  • Li Y, Qiu S, Zhong W, Li Y, Liu Y, Cheng Y, et al. Association Between DCC Polymorphisms and Susceptibility to Autism Spectrum Disorder. J Autism Dev Disord. 2020;50(10):3800–9.


    Google Scholar
     

  • da Silva Montenegro EM, Costa CS, Campos G, Scliar M, de Almeida TF, Zachi EC, et al. Meta-analyses support previous and novel autism candidate genes: outcomes of an unexplored Brazilian cohort. Autism Res. 2020;13:199–206.


    Google Scholar
     

  • Qiu S, Li Y, Bai Y, Shi J, Cui H, Gu Y, et al. SHANK1 polymorphisms and SNP-SNP interactions among SHANK family: a possible cue for recognition to autism spectrum disorder in infant age. Autism Res. 2019;12:375–83.


    Google Scholar
     

  • Bai Y, Qiu S, Li Y, Li Y, Zhong W, Shi M, et al. Genetic association between SHANK2 polymorphisms and susceptibility to autism spectrum disorder. IUBMB Life. 2018;70:763–76.

    CAS 

    Google Scholar
     

  • Wang J, Gong J, Li L, Chen Y, Liu L, Gu H, et al. Neurexin gene family variants as risk factors for autism spectrum disorder. Autism Res. 2018;11:37–43.


    Google Scholar
     

  • Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O, et al. Association between autism and variants in the wingless-type MMTV integration site family member 2 ( WNT2) gene. Int J Neuropsychopharmacol. 2010;13:443–9.

    CAS 

    Google Scholar
     

  • Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA. 2014;311:1770–7.

    CAS 

    Google Scholar
     

  • Ratto AB, Mesibov GB. Autism spectrum disorders in adolescence and adulthood: long-term outcomes and relevant issues for treatment and research. Sci China Life Sci. 2015;58:1010–5.


    Google Scholar
     

  • C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20:602–11.


    Google Scholar
     

  • Safari MR, Omrani MD, Noroozi R, Sayad A, Sarrafzadeh S, Komaki A, et al. Synaptosome-associated protein 25 (SNAP25) gene association analysis revealed risk variants for ASD, in Iranian population. J Mol Neurosci. 2017;61:305–11.

    CAS 

    Google Scholar
     

  • Murdoch JD, State MW. Recent developments in the genetics of autism spectrum disorders. Curr Opin Genet Dev. 2013;23:310–5.

    CAS 

    Google Scholar
     

  • Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.

    CAS 

    Google Scholar
     

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.

    CAS 

    Google Scholar
     

  • Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet. 2008;40:880–5.

    CAS 

    Google Scholar
     

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.

    CAS 

    Google Scholar
     

  • Glessner JT, Li J, Wang D, March M, Lima L, Desai A, et al. Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Med. 2017;9:106.


    Google Scholar
     

  • Erikson GA, Deshpande N, Kesavan BG, Torkamani A. SG-ADVISER CNV: copy-number variant annotation and interpretation. Genet Med. 2015;17:714–8.


    Google Scholar
     

  • Chen CH, Chen HI, Chien WH, Li LH, Wu YY, Chiu YN, et al. High resolution analysis of rare copy number variants in patients with autism spectrum disorder from Taiwan. Sci Rep. 2017;7:11919.


    Google Scholar
     

  • Rosti RO, Sadek AA, Vaux KK, Gleeson JG. The genetic landscape of autism spectrum disorders. Dev Med Child Neurol. 2014;56:12–8.


    Google Scholar
     

  • Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011;70:886–97.

    CAS 

    Google Scholar
     

  • Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron. 2011;70:863–85.

    CAS 

    Google Scholar
     

  • Liu X, Takumi T. Genomic and genetic aspects of autism spectrum disorder. Biochem Biophys Res Commun. 2014;452:244–53.

    CAS 

    Google Scholar
     

  • Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    CAS 

    Google Scholar
     

  • Yin CL, Chen HI, Li LH, Chien YL, Liao HM, Chou MC, et al. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Mol Autism. 2016;7:23.


    Google Scholar
     

  • Marrale M, Albanese NN, Cali F, Romano V. Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation. PLoS ONE. 2014;9:e90947.


    Google Scholar
     

  • Park H, Kim JI, Ju YS, Gokcumen O, Mills RE, Kim S, et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet. 2010;42:400–5.

    CAS 

    Google Scholar
     

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington DC: American Psychiatric Publishing Inc; 2013.


    Google Scholar
     

  • Qiu S, Li Y, Li Y, Zhong W, Shi M, Zhao Q, et al. Association between SHANK3 polymorphisms and susceptibility to autism spectrum disorder. Gene. 2018;651:100–5.

    CAS 

    Google Scholar
     

  • Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.

    CAS 

    Google Scholar
     

  • Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13:680–5.


    Google Scholar
     

  • Vaishnavi V, Manikandan M, Tiwary BK, Munirajan AK. Insights on the functional impact of microRNAs present in autism-associated copy number variants. PLoS ONE. 2013;8:e56781.


    Google Scholar
     

  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    CAS 

    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS 

    Google Scholar
     

  • Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.

    CAS 

    Google Scholar
     

  • Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341–55.

    CAS 

    Google Scholar
     

  • Kushima I, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y, et al. Comparative analyses of copy-number variation in autism spectrum disorder and schizophrenia reveal etiological overlap and biological insights. Cell Rep. 2018;24:2838–56.

    CAS 

    Google Scholar
     

  • Gillentine MA, Yin J, Bajic A, Zhang P, Cummock S, Kim JJ, et al. Functional consequences of CHRNA7 copy-number alterations in induced pluripotent stem cells and neural progenitor cells. Am J Hum Genet. 2017;101:874–87.

    CAS 

    Google Scholar
     

  • Bitar T, Hleihel W, Marouillat S, Vonwill S, Vuillaume ML, Soufia M, et al. Identification of rare copy number variations reveals PJA2, APCS, SYNPO, and TAC1 as novel candidate genes in Autism Spectrum Disorders. Mol Genet Genomic Med. 2019;7:e786.


    Google Scholar
     

  • Bremer A, Giacobini M, Eriksson M, Gustavsson P, Nordin V, Fernell E, et al. Copy number variation characteristics in subpopulations of patients with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet. 2011;156:115–24.


    Google Scholar
     

  • Celestino-Soper PB, Shaw CA, Sanders SJ, Li J, Murtha MT, Ercan-Sencicek AG, et al. Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Hum Mol Genet. 2011;20:4360–70.

    CAS 

    Google Scholar
     

  • Chen CH, Chen HI, Liao HM, Chen YJ, Fang JS, Lee KF, et al. Clinical and molecular characterization of three genomic rearrangements at chromosome 22q13.3 associated with autism spectrum disorder. Psychiatr Genet. 2017;27:23–33.

    CAS 

    Google Scholar
     

  • Rosenfeld JA, Ballif BC, Torchia BS, Sahoo T, Ravnan JB, Schultz R, et al. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genet Med. 2010;12:694–702.


    Google Scholar
     

  • Phelan MC. Deletion 22q13.3 syndrome. Orphanet J Rare Dis. 2008;3:14.


    Google Scholar
     

  • Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan-McDermid Syndrome). Mol Syndromol. 2012;2:186–201.

    CAS 

    Google Scholar
     

  • Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4:18.

    CAS 

    Google Scholar
     

  • Sarasua SM, Boccuto L, Sharp JL, Dwivedi A, Chen CF, Rollins JD, et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet. 2014;133:847–59.

    CAS 

    Google Scholar
     

  • Lowther C, Costain G, Stavropoulos DJ, Melvin R, Silversides CK, Andrade DM, et al. Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genet Med. 2015;17:149–57.


    Google Scholar
     

  • Gillentine MA, Schaaf CP. The human clinical phenotypes of altered CHRNA7 copy number. Biochem Pharmacol. 2015;97:352–62.

    CAS 

    Google Scholar
     

  • Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455:232–6.

    CAS 

    Google Scholar
     

  • Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet. 2017;174:485–537.


    Google Scholar
     

  • Eisenegger C, Knoch D, Ebstein RP, Gianotti LR, Sandor PS, Fehr E. Dopamine receptor D4 polymorphism predicts the effect of L-DOPA on gambling behavior. Biol Psychiatry. 2010;67:702–6.

    CAS 

    Google Scholar
     

  • Gadow KD, Devincent CJ, Olvet DM, Pisarevskaya V, Hatchwell E. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur J Neurosci. 2010;32:1058–65.


    Google Scholar
     

  • Sener EF, Taheri S, Sahin MC, Bayramov KK, Marasli MK, Zararsiz G, et al. Altered global mRNA expressions of pain and aggression related genes in the blood of children with autism spectrum disorders. J Mol Neurosci. 2019;67:89–96.

    CAS 

    Google Scholar
     

  • Emanuele E, Boso M, Cassola F, Broglia D, Bonoldi I, Mancini L, et al. Increased dopamine DRD4 receptor mRNA expression in lymphocytes of musicians and autistic individuals: bridging the music-autism connection. Neuro Endocrinol Lett. 2010;31:122–5.


    Google Scholar
     

  • Herault J, Perrot A, Barthelemy C, Buchler M, Cherpi C, Leboyer M, et al. Possible association of c-Harvey-Ras-1 (HRAS-1) marker with autism. Psychiatry Res. 1993;46:261–7.

    CAS 

    Google Scholar
     

  • Herault J, Petit E, Martineau J, Perrot A, Lenoir P, Cherpi C, et al. Autism and genetics: clinical approach and association study with two markers of HRAS gene. Am J Med Genet. 1995;60:276–81.

    CAS 

    Google Scholar
     

  • Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK, et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry. 2014;4:e464.

    CAS 

    Google Scholar
     

  • Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol. 2009;19:231–4.

    CAS 

    Google Scholar
     

  • Frazier TW. Autism Spectrum Disorder Associated with Germline Heterozygous PTEN Mutations. Cold Spring Harb Perspect Med. 2019;9:a037002.

    CAS 

    Google Scholar
     

  • Marcinkowska M, Szymanski M, Krzyzosiak WJ, Kozlowski P. Copy number variation of microRNA genes in the human genome. BMC Genomics. 2011;12:183.

    CAS 

    Google Scholar
     

  • Hsu R, Schofield CM, Dela Cruz CG, Jones-Davis DM, Blelloch R, Ullian EM. Loss of microRNAs in pyramidal neurons leads to specific changes in inhibitory synaptic transmission in the prefrontal cortex. Mol Cell Neurosci. 2012;50:283–92.

    CAS 

    Google Scholar
     

  • Xin C, Xia J, Liu Y, Zhang Y. MicroRNA-202-3p Targets Brain-Derived Neurotrophic Factor and Is Involved in Depression-Like Behaviors. Neuropsychiatr Dis Treat. 2020;16:1073–83.

    CAS 

    Google Scholar
     

  • Skogstrand K, Hagen CM, Borbye-Lorenzen N, Christiansen M, Bybjerg-Grauholm J, Bækvad-Hansen M, et al. Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Transl Psychiatry. 2019;9:252.


    Google Scholar
     

  • Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, et al. Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci. 2007;25:367–72.

    CAS 

    Google Scholar
     

  • Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem. 2014;289:5184–98.

    CAS 

    Google Scholar
     

  • Liu DZ, Ander BP, Tian Y, Stamova B, Jickling GC, Davis RR, et al. Integrated analysis of mRNA and microRNA expression in mature neurons, neural progenitor cells and neuroblastoma cells. Gene. 2012;495:120–7.

    CAS 

    Google Scholar
     

  • Li Y, Qiu S, Zhong W, Shi J, Cui H, Li Y, et al. rs1007893 and rs2070435 in DIP2A are associated with visual-reaction-behavior phenotype in Chinese Han population with autism spectrum disorder. Research in Autism Spectrum Disorders. 2020;70:101475.


    Google Scholar
     

  • Ma J, Zhang LQ, He ZX, He XX, Wang YJ, Jian YL, et al. Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biol. 2019;17:e3000461.

    CAS 

    Google Scholar
     

  • Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature. 2016;530:98–102.

    CAS 

    Google Scholar
     

  • de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345–61.


    Google Scholar
     

  • Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16:551–63.

    CAS 

    Google Scholar
     

  • Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.

    CAS 

    Google Scholar
     

  • Quesnel-Vallieres M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet. 2019;20:51–63.

    CAS 

    Google Scholar
     

  • Kosillo P, Bateup HS. Dopaminergic dysregulation in syndromic autism spectrum disorders: insights from genetic mouse models. Front Neural Circuits. 2021;15:700968.

    CAS 

    Google Scholar
     

  • Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014;83:1131–43.

    CAS 

    Google Scholar
     

  • Stern M. Insulin signaling and autism. Front Endocrinol (Lausanne). 2011;2:54.

    CAS 

    Google Scholar
     

  • Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, et al. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry. 2001;158:1058–66.

    CAS 

    Google Scholar
     

  • Peça J, Feng G. Cellular and synaptic network defects in autism. Curr Opin Neurobiol. 2012;22:866–72.


    Google Scholar
     

  • Suda S, Iwata K, Shimmura C, Kameno Y, Anitha A, Thanseem I, et al. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism. Mol Autism. 2011;2:14.

    CAS 

    Google Scholar
     

  • Lee J, Ha S, Ahn J, Lee ST, Choi JR, Cheon KA. The role of ion channel-related genes in autism spectrum disorder: a study using next-generation sequencing. Front Genet. 2021;12:595934.

    CAS 

    Google Scholar
     

  • Read more here: Source link