Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease

  • Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers 1, 15005 (2015).

    Article 

    Google Scholar
     

  • Shulman, J. M., De Jager, P. L. & Feany, M. B. Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193–222 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sims, R., Hill, M. & Williams, J. The multiplex model of the genetics of Alzheimer’s disease. Nat. Neurosci. 23, 311–322 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bunting, E. L., Hamilton, J. & Tabrizi, S. J. Polyglutamine diseases. Curr. Opin. Neurobiol. 72, 39–47 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lieberman, A. P., Shakkottai, V. G. & Albin, R. L. Polyglutamine repeats in neurodegenerative diseases. Annu. Rev. Pathol. 14, 1–27 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Aronin, N. & DiFiglia, M. Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov. Disord. 29, 1455–1461 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tabrizi, S. J. et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 380, 2307–2316 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fyfe, I. Antisense oligonucleotides improve cognitive function in HD model. Nat. Rev. Neurol. 14, 690–691 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kordasiewicz, H. B. et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Southwell, A. L. et al. Huntingtin suppression restores cognitive function in a mouse model of Huntington’s disease. Sci. Transl. Med. 10, eaar3959 (2018).

    Article 

    Google Scholar
     

  • Franich, N. R. et al. AAV vector–mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol. Ther. 16, 947–956 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Matos, C. A. et al. in Polyglutamine Disorders (eds Nóbrega, C. & Pereira de Almeida, L.) 395–438 (Springer, 2018).

  • McBride, J. L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol. Ther. 19, 2152–2162 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Spronck, E. A. et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in Huntington disease mouse models. Mol. Ther. Methods Clin. Dev. 13, 334–343 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vallès, A. et al. Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal microRNA-based gene therapy. Sci. Transl. Med. 13, eabb8920 (2021).

    Article 

    Google Scholar
     

  • Imbert, M., Blandel, F., Leumann, C., Garcia, L. & Goyenvalle, A. Lowering mutant huntingtin using tricyclo-DNA antisense oligonucleotides as a therapeutic approach for Huntington’s disease. Nucleic Acid Ther. 29, 256–265 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Silva, A. C. et al. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 143, 407–429 (2020).

    Article 

    Google Scholar
     

  • Kingwell, K. Double setback for ASO trials in Huntington disease. Nat. Rev. Drug Discov. 20, 412–413 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duan, Y. et al. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer’s disease alleviates amyloid-related pathologies in mice. Nat. Biomed. Eng. 6, 168–180 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ekman, F. K. et al. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol. Ther. Nucleic Acids 17, 829–839 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest. 127, 2719–2724 (2017).

    Article 

    Google Scholar
     

  • Yang, W., Li, S. & Li, X.-J. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol. Neurodegener. 14, 17 (2019).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570, 326–331 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bedbrook, C. N., Deverman, B. E. & Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Annu.Rev. Neurosci. 41, 323–348 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lind, N. M. et al. The use of pigs in neuroscience: modeling brain disorders. Neurosci. Biobehav. Rev. 31, 728–751 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Moretti, A. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yan, S. et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173, 989–1002.e13 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Manfredsson, F. P., Rising, A. C. & Mandel, R. J. AAV9: a potential blood-brain barrier buster. Mol. Ther. 17, 403–405 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dayton, R. D., Wang, D. B. & Klein, R. L. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin. Biol. Ther. 12, 757–766 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nasir, J. et al. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Zeitlin, S., Liu, J.-P., Chapman, D. L., Papaioannou, V. E. & Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 11, 155–163 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Reiner, A., Dragatsis, I., Zeitlin, S. & Goldowitz, D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol. Neurobiol. 28, 259–275 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G., Liu, X., Gaertig, M. A., Li, S. & Li, X.-J. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc. Natl Acad. Sci. USA 113, 3359–3364 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tabrizi, S. J., Ghosh, R. & Leavitt, B. R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 102, 899 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kaemmerer, W. F. & Grondin, R. C. The effects of huntingtin-lowering: what do we know so far? Degener. Neurol. Neuromuscul. Dis. 9, 3–17 (2019).

    CAS 

    Google Scholar
     

  • Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Salsman, J. & Dellaire, G. Precision genome editing in the CRISPR era. Biochem. Cell Biol. 95, 187–201 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C.-E. et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J. Cell Biol. 181, 803–816 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Evers, M. M. et al. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol. Ther. 26, 2163–2177 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Langfelder, P. et al. Integrated genomics and proteomics define huntingtin CAG length–dependent networks in mice. Nat. Neurosci. 19, 623–633 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Malla, B., Guo, X., Senger, G., Chasapopoulou, Z. & Yildirim, F. A systematic review of transcriptional dysregulation in Huntington’s disease studied by RNA sequencing. Front. Genet. 12, 751033 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Woodman, B. et al. The HdhQ150/Q150 knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res. Bull. 72, 83–97 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schoch, K. M. & Miller, T. M. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94, 1056–1070 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Marxreiter, F., Stemick, J. & Kohl, Z. Huntingtin lowering strategies. Int. J. Mol. Sci. 21, 2146 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeitler, B. et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 25, 1131–1142 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Menalled, L. B. Knock-in mouse models of Huntington’s disease. Neurotherapeutics 2, 465–470 (2005).

    Article 

    Google Scholar
     

  • Sauleau, P., Lapouble, E., Val-Laillet, D. & Malbert, C.-H. The pig model in brain imaging and neurosurgery. Animal 3, 1138–1151 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gutierrez, K., Dicks, N., Glanzner, W., Agellon, L. & Bordignon, V. Efficacy of the porcine species in biomedical research. Front. Genet. 6, 293 (2015).

    Article 

    Google Scholar
     

  • Klymiuk, N. et al. Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol. Pathol. 44, 346–357 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Meurens, F., Summerfield, A., Nauwynck, H., Saif, L. & Gerdts, V. The pig: a model for human infectious diseases. Trends Microbiol. 20, 50–57 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 380, 287–304 (2020).

    Article 

    Google Scholar
     

  • Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. & Frazier, K. S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Samaranch, L. et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol. Ther. 22, 329–337 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Marcó, S. et al. Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. Mol. Ther. Methods Clin. Dev. 23, 370–389 (2021).

    Article 

    Google Scholar
     

  • West, J. & Gill, W. W. Genome editing in large animals. J. Equine Vet. Sci. 41, 1–6 (2016).

    Article 

    Google Scholar
     

  • Zhao, J., Lai, L., Ji, W. & Zhou, Q. Genome editing in large animals: current status and future prospects. Natl Sci. Rev. 6, 402–420 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wilton, D. K. & Stevens, B. The contribution of glial cells to Huntington’s disease pathogenesis. Neurobiol. Dis. 143, 104963 (2020).

    Article 

    Google Scholar
     

  • Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 

    Google Scholar
     

  • Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Head, S. R. et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques doi.org/10.2144/000114133 (2014).

  • Read more here: Source link