Dual specificity and target gene selection by the MADS-domain protein FRUITFULL

  • Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228–3240.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlak, M. et al. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res. 29, 506–519 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smaczniak, C., Muiño, J. M., Chen, D., Angenent, G. C. & Kaufmann, K. Differences in DNA binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell 29, 1822–1835 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smaczniak, C., Immink, R. G. H., Angenent, G. C. & Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081–3098 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwarz-Sommer, Z. et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81–94 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Folter, S. et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17, 1424–1433 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folter, Sde & Angenent, G. C. trans meets cis in MADS science. Trends Plant Sci. 11, 224–231 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Theißen, G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Airoldi, C. A., Bergonzi, S. & Davies, B. Single amino acid change alters the ability to specify male or female organ identity. Proc. Natl Acad. Sci. USA 107, 18898–18902 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Que, K. et al. Regulatory switch enforced by basic helix–loop–helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc. Natl Acad. Sci. USA 109, E2091–E2097 (2012).


    Google Scholar
     

  • Camille, S. et al. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343, 645–648 (2014).

    Article 

    Google Scholar
     

  • Lai, X. et al. The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat. Commun. 12, 4760 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bemer, M. et al. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J. Exp. Bot. 68, 3391–3403 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandel, M. A. & Yanofsky, M. F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7, 1763–1771 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hempel, F. D. et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balanzà, V., Martínez-Fernández, I. & Ferrándiz, C. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J. Exp. Bot. 65, 1193–1203 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balanzà, V. et al. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat. Commun. 9, 565 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F. & Ferrándiz, C. Inflorescence meristem fate is dependent on seed development and FRUITFULL in Arabidopsis thaliana. Front. Plant Sci. 10, 1622 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roeder, A. H. K., Ferrándiz, C. & Yanofsky, M. F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 13, 1630–1635 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Q., Ferrandiz, C., Yanofsky, M. F. & Martienssen, R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Marzo, M. et al. SEEDSTICK controls Arabidopsis fruit size by regulating cytokinin levels and FRUITFULL. Cell Rep. 30, 2846–2857.e3 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • José Ripoll, J. et al. microRNA regulation of fruit growth. Nat. Plants 1, 15036 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Smaczniak, C. et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA 109, 1560–1565 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudre, D. et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J. Exp. Bot. 64, 2665–2688 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A. & Perez-Amador, M. A. A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol. 154, 163–172 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsch-Martínez, N. & de Folter, S. Hormonal control of the development of the gynoecium. Curr. Opin. Plant Biol. 29, 104–114 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kashkan, I. et al. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. N. Phytol. 233, 329–343 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J. L. & Meyerowitz, E. M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2, e117 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbanus, S. L. et al. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 9, 5 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muiño, J. M., Kaufmann, K., van Ham, R. C. H. J., Angenent, G. C. & Krajewski, P. ChIP–seq analysis in R (CSAR): an R package for the statistical detection of protein-bound genomic regions. Plant Methods 7, 11 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, R56 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pajoro, A. et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15, R41 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akiva, S.-K. et al. The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proc. Natl Acad. Sci. USA 116, 16127–16136 (2019).

    Article 

    Google Scholar
     

  • van Gelderen, K., van Rongen, M., Liu, A., Otten, A. & Offringa, R. An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Mol. Plant 9, 857–869 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aichinger, E. et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet. 5, e1000605 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J. 78, 706–714 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, N. et al. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nat. Commun. 9, 5290 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nuceic Acids Res. doi.org/10.1093/nar/gkv416 (2015).

  • Muiño, J. M., Smaczniak, C., Angenent, G. C., Kaufmann, K. & Van Dijk, A. D. J. Structural determinants of DNA recognition by plant MADS-domain transcription factors. Nucleic Acids Res. 42, 2138–2146 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eeckhoute, J., Métivier, R. & Salbert, G. Defining specificity of transcription factor regulatory activities. J. Cell Sci. 122, 4027–4034 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jana, T., Brodsky, S. & Barkai, N. Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet. 37, 421–432 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Immink, R. G. H. et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10, R24 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregis, V., Sessa, A., Dorca-Fornell, C. & Kater, M. M. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60, 626–637 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Buylla, E. R. et al. Flower development. Arab. B. 8, e0127 (2010).

    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Mourik, H., Muiño, J. M., Pajoro, A., Angenent, G. C. & Kaufmann, K. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP–seq: experimental protocol and computational analysis. Methods Mol. Biol. 1284, 93–121 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP–seq) or hybridization to whole genome arrays (ChIP–ChIP). Nat. Protoc. 5, 457–472 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Read more here: Source link