Delivering on the promise of protein degraders

  • Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Churcher, I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem. 61, 444–452 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maple, H. J., Clayden, N., Baron, A., Stacey, C. & Felix, R. Developing degraders: principles and perspectives on design and chemical space. MedChemComm 10, 1755–1764 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersson, M. & Crews, C. M. Proteolysis targeting chimeras (PROTACs) — past, present and future. Drug Discov. Today Technol. 31, 15–27 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rambacher, K. M., Calabrese, M. F. & Yamaguchi, M. Perspectives on the development of first-in-class protein degraders. Future Med. Chem. 13, 1203–1226 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alabi, S. B. & Crews, C. M. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 296, 100647 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okuhira, K. et al. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett. 585, 1147–1152 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al. Emerging protein degradation strategies: expanding the scope to extracellular and membrane proteins. Theranostics 11, 8337–8349 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samarasinghe, K. T. G. et al. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chem. Biol. 28, 648–661 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantrill, C. et al. Fundamental aspects of DMPK optimization of targeted protein degraders. Drug. Discov. Today 25, 969–982 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med. Chem. 12, 1155–1179 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pike, A., Williamson, B., Harlfinger, S., Martin, S. & McGinnity, D. F. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov. Today 25, 1793–1800 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez-Rivera, F. P. & Levi, S. M. Unifying catalysis framework to dissect proteasomal degradation paradigms. ACS Cent. Sci. 7, 1117–1125 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iconomou, M. & Saunders, D. N. Systematic approaches to identify E3 ligase substrates. Biochemical J. 473, 4083–4101 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troup, R. I., Fallan, C. & Baud, M. G. J. Current strategies for the design of PROTAC linkers: a critical review. Explor. Target. Antitumor Ther. 1, 273–312 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan, P. et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov. Today 17, 419–424 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartlett, D. W. & Gilbert, A. M. A kinetic proofreading model for bispecific protein degraders. J. Pharmacokinet. Pharmacodyn. 48, 149–163 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartlett, D. W. & Gilbert, A. M. Translational PK–PD for targeted protein degradation. Chem. Soc. Rev. 51, 3477–3486 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowak, R. P. & Jones, L. H. Target validation using PROTACs: applying the four pillars framework. SLAS Discov. 26, 474–483 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edmondson, S. D., Yang, B. & Fallan, C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg. Med. Chem. Lett. 29, 1555–1564 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shultz, M. D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62, 1701–1714 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ermondi, G., Vallaro, M. & Caron, G. Degraders early developability assessment: face-to-face with molecular properties. Drug Discov. Today 25, 1585–1591 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ermondi, G., Vallaro, M., Goetz, G., Shalaeva, M. & Caron, G. Updating the portfolio of physicochemical descriptors related to permeability in the beyond the Rule of 5 chemical space. Eur. J. Pharm. Sci. 146, 105274 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi Sebastiano, M. et al. Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the Rule of 5. J. Med. Chem. 61, 4189–4202 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein, V. G. et al. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med. Chem. Lett. 11, 1732–1738 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrylak, D. P. et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). J. Clin. Oncol. ascopubs.org/doi/10.1200/JCO.2020.38.15_suppl.3500 (2020).

  • Jin, J. et al. The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics 10, 10141–10153 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem. Biol. 13, 628–635 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, M. et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination–proteasome degradation pathway. Eur. J. Med. Chem. 146, 251–259 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu, J. et al. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol. 27, 751–762 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Testa, A., Hughes, S. J., Lucas, X., Wright, J. E. & Ciulli, A. Structure-based design of a macrocyclic PROTAC. Angew. Chem. Int. Ed. 59, 1727–1734 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fulcher, L. J. et al. An affinity-directed protein missile system for targeted proteolysis. Open Biol. 6, 160255 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Röth, S. et al. Targeting endogenous K-RAS for degradation through the affinity-directed protein missile system. Cell Chem. Biol. 27, 1151–1163 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, L. M. et al. Inducible degradation of target proteins through a tractable affinity-directed protein missile system. Cell Chem. Biol. 27, 1164–1180 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caussinus, E., Kanca, O. & Affolter, M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19, 117–121 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Portnoff, A. D., Stephens, E. A., Varner, J. D. & DeLisa, M. P. Ubiquibodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate specificity for targeted protein silencing. J. Biol. Chem. 289, 7844–7855 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, S. et al. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc. Natl Acad. Sci. USA 117, 5791–5800 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, J. et al. Destruction of DNA-binding proteins by programmable oligonucleotide PROTAC (O’PROTAC): effective targeting of LEF1 and ERG. Adv. Sci. 8, 2102555 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. TF-PROTACs enable targeted degradation of transcription factors. J. Am. Chem. Soc. 143, 8902–8910 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Mooter, G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 9, e79–e85 (2012).

    Article 

    Google Scholar
     

  • Patel, V., Lalani, R., Bardoliwala, D., Ghosh, S. & Misra, A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech 19, 3609–3630 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, P. et al. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 11, 132 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schittny, A., Huwyler, J. & Puchkov, M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 27, 110–127 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phan, T. N. Q., Le-Vinh, B., Efiana, N. A. & Bernkop-Schnürch, A. Oral self-emulsifying delivery systems for systemic administration of therapeutic proteins: science fiction? J. Drug Target. 27, 1017–1024 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCartney, F. et al. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J. Control. Rel. 310, 115–126 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brayden, D. J., Hill, T. A., Fairlie, D. P., Maher, S. & Mrsny, R. J. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv. Drug Deliv. Rev. 157, 2–36 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Overgaard, R. V., Navarria, A., Ingwersen, S. H., Bækdal, T. A. & Kildemoes, R. J. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials. Clin. Pharmacokinet. 60, 1335–1348 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brayden, D. J. & Maher, S. Transient permeation enhancer® (TPE®) technology for oral delivery of octreotide: a technological evaluation. Expert. Opin. Drug Deliv. 18, 1501–1512 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bækdal, T. A. et al. Effect of various dosing conditions on the pharmacokinetics of oral semaglutide, a human glucagon-like peptide-1 analogue in a tablet formulation. Diabetes Ther. 12, 1915–1927 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 58, 7370–7380 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bucheit, J. D. et al. Oral semaglutide: a review of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technol. Ther. 22, 10–18 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, F. & Bae, Y. H. Bile acid transporter-mediated oral drug delivery. J. Control. Rel. 327, 100–116 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maher, S., Ryan, K. B., Ahmad, T., O’Driscoll, C. M. & Brayden, D. J. in Nanostructured Biomaterials for Overcoming Biological Barriers (eds Alonso, M. J. & Csaba, N. S.) 39–62 (Royal Society of Chemistry, 2012).

  • Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhalla, A. K. et al. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects. Drug Deliv. Transl. Res. 12, 294–305 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Los, M. et al. Expression pattern of the von Hippel–Lindau protein in human tissues. Lab. Invest. 75, 231–238 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, X. et al. Profiling of diverse tumor types establishes the broad utility of VHL-based ProTaCs and triages candidate ubiquitin ligases. iScience 25, 103985 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamanaka, S. et al. Thalidomide and its metabolite 5-hydroxythalidomide induce teratogenicity via the cereblon neosubstrate PLZF. EMBO J. 40, e105375 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asatsuma-Okumura, T. et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat. Chem. Biol. 15, 1077–1084 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Discovery of XL01126: a potent, fast, cooperative, selective, orally bioavailable, and blood–brain barrier penetrant PROTAC degrader of leucine-rich repeat kinase 2. J. Am. Chem. Soc. 144, 16930–16952 (2022).

    Article 

    Google Scholar
     

  • Posternak, G. et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat. Chem. Biol. 16, 1170–1178 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alabi, S. et al. Mutant-selective degradation by BRAF-targeting PROTACs. Nat. Commun. 12, 920 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer, L. T. & Zhang, X. Expanding the landscape of E3 ligases for targeted protein degradation. Curr. Res. Chem. Biol. 2, 100020 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Leeson, P. D. et al. Target-based evaluation of “drug-like” properties and ligand efficiencies. J. Med. Chem. 64, 7210–7230 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imaide, S. et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol. 17, 1157–1167 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riching, K. M., Caine, E. A., Urh, M. & Daniels, D. L. The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chem. Soc. Rev. 51, 6210–6221 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riching, K. M. et al. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle–dependent degradation of CDK2. SLAS Discov. 26, 560–569 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaminskas, L. M., Boyd, B. J. & Porter, C. J. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6, 1063–1084 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashton, S. et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med. 8, 325ra317 (2016).

    Article 

    Google Scholar
     

  • Patterson, C. M. et al. Design and optimisation of dendrimer-conjugated Bcl-2/xL inhibitor, AZD0466, with improved therapeutic index for cancer therapy. Commun. Biol. 4, 112 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabizon, A., Shmeeda, H. & Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin. Clin. Pharmacokinet. 42, 419–436 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W., Lionberger, R. & Yu, L. X. In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis 3, 333–344 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamb, Y. N. & Scott, L. J. Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma. Drugs 77, 785–792 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blair, H. A. Daunorubicin/cytarabine liposome: a review in acute myeloid leukaemia. Drugs 78, 1903–1910 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, D., Zhou, S. & Gao, W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281–12290 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crommelin, D. J. A., van Hoogevest, P. & Storm, G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Rel. 318, 256–263 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Saraswat, A. et al. Nanoformulation of proteolysis targeting chimera targeting ‘undruggable’ c-Myc for the treatment of pancreatic cancer. Nanomedicine 15, 1761–1777 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donahue, N. D., Acar, H. & Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dragovich, P. S. Degrader–antibody conjugates. Chem. Soc. Rev. 51, 3886–3897 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chari, R. V. J., Miller, M. L. & Widdison, W. C. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 53, 3796–3827 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sau, S., Alsaab, H. O., Kashaw, S. K., Tatiparti, K. & Iyer, A. K. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov. Today 22, 1547–1556 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dragovich, P. S. et al. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor α (ERα). Bioorg. Med. Chem. Lett. 30, 126907 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pillow, T. H. et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem 15, 17–25 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J. Med. Chem. 64, 2534–2575 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J. Med. Chem. 64, 2576–2607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maneiro, M. A. et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 15, 1306–1312 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4, 128ra139 (2012).

    Article 

    Google Scholar
     

  • Johnston, M. C. & Scott, C. J. Antibody conjugated nanoparticles as a novel form of antibody drug conjugate chemotherapy. Drug Discov. Today Technol. 30, 63–69 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Di, J., Xie, F. & Xu, Y. When liposomes met antibodies: drug delivery and beyond. Adv. Drug Deliv. Rev. 154-155, 151–162 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cimas, F. J. et al. Controlled delivery of BET-PROTACs: in vitro evaluation of MZ1-loaded polymeric antibody conjugated nanoparticles in breast cancer. Pharmaceutics 12, 986 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usach, I., Martinez, R., Festini, T. & Peris, J.-E. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv. Ther. 36, 2986–2996 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badkar, A. V., Gandhi, R. B., Davis, S. P. & LaBarre, M. J. Subcutaneous delivery of high-dose/volume biologics: current status and prospect for future advancements. Drug Des. Devel. Ther. 15, 159–170 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, J. C. & Burgess, D. J. (eds) Long Acting Injections and Implants (Springer, 2012).

  • Hillery, A. & Park, K. (eds) Drug Delivery: Fundamentals and Applications (CRC, 2016).

  • O’Brien, M. N., Jiang, W., Wang, Y. & Loffredo, D. M. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J. Control. Rel. 336, 144–158 (2021).

    Article 

    Google Scholar
     

  • Shah, J. C. & Hong, J. Model for long acting injectables (depot formulation) based on pharmacokinetics and physical chemical properties. AAPS J. 24, 44 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeYoung, M. B., MacConnell, L., Sarin, V., Trautmann, M. & Herbert, P. Encapsulation of exenatide in poly-(d,l-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol. Ther. 13, 1145–1154 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, K. et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J. Control. Rel. 304, 125–134 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Robertson, J. F. R. & Harrison, M. Fulvestrant: pharmacokinetics and pharmacology. Br. J. Cancer 90, S7–S10 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miah, A. H. et al. Optimization of a series of RIPK2 PROTACs. J. Med. Chem. 64, 12978–13003 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. An integrated strategy for assessing the metabolic stability and biotransformation of macrocyclic peptides in drug discovery toward oral delivery. Anal. Chem. 94, 2032–2041 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, Z., Dougherty, P. G. & Pei, D. Targeting intracellular protein–protein interactions with cell-permeable cyclic peptides. Curr. Opin. Chem. Biol. 38, 80–86 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17, 850–860 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, J. et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front. Pharmacol. 11, 00697 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W.-C. et al. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur. J. Pharm. Biopharm. 169, 256–267 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dugal-Tessier, J., Thirumalairajan, S. & Jain, N. Antibody–oligonucleotide conjugates: a twist to antibody–drug conjugates. J. Clin. Med. 10, 838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Tuntland, T. et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at novartis institute of biomedical research. Front. Pharmacol. 5, 174–174 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benet, L. Z. & Zia-Amirhosseini, P. Basic principles of pharmacokinetics. Toxicol. Pathol. 23, 115–123 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondic, A. et al. Navigating between right, wrong, and relevant: the use of mathematical modeling in preclinical decision making. Front. Pharmacol. 13, 860881 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derendorf, H. & Meibohm, B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm. Res. 16, 176–185 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azer, K. et al. History and future perspectives on the discipline of quantitative systems pharmacology modeling and its applications. Front. Physiol. 12, 637999 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link