Adaptations of Pseudoxylaria towards a comb-associated lifestyle in fungus-farming termite colonies

Genome reduction is associated with a termite comb-associated lifestyle

For our studies, we collected fungus comb samples originating from mounds of Macrotermes natalensis, Odontotermes spp., and Microtermes spp. termites and were able to obtain seven viable Pseudoxylaria cultures (X802 [Microtermes sp.], Mn132, Mn153, X187, X3-2 [Macrotermes natalensis], and X167, X170LB [Odontotermes spp.], Table S1S3).

To test if a fungus comb-associated lifestyle of Pseudoxylaria was reflected in differences at the genome level, we sequenced the genomes of all seven isolates using a combination of paired-end shotgun sequencing (BGISEQ-500, BGI) and long-read sequencing (PacBio sequel, BGI or Oxford Nanopore Technologies, Oxford, UK). In addition, we sequenced the transcriptomes (BGISEQ, BGI) of two isolates (X802, X170LB). Eleven publicly available genomes of free-living Xylaria (Fig. 2A, B) were used as reference genomes (Table S4). Hybrid draft genomes were comprised on average of 33–742 scaffolds with total haploid assembly lengths of 33.2–40.4 Mb, and a high BUSCO completeness of genomes (> 95 %) with a total number of predicted proteins ranging from 8.8 to 12.1 × 103. The GC content was comparable to reference genomes with 49.7–51.6%. To verify the phylogenetic placement of the isolates, different genetic loci encoding conserved protein sequences (α-actin (ACT), second largest subunit of RNA polymerase (RPB2), β-tubulin (TUB) and the internal transcribed spacer (ITS) were used as genetic markers [7, 13].

Fig. 2: Geographic and comparative phylogenomic analysis of termite-associated Pseudoxylaria isolates (strains 1-7) and free-living Xylaria (strains 8–18).
figure 2

A Geographic origins of genome-sequenced free-living Xylaria and termite-associated Pseudoxylaria isolates, B phylogenomic placement based on single-copy ortholog protein sequences, and C comparison of genome assembly length, and numbers of predicted proteins per genome.

Phylogenies were reconstructed from ITS sequences and three aligned sequence datasets (RPB2, TUB, ACT) using reference sequences of twelve different taxa (Table S4S7). Consistent with previous findings, all isolates grouped within the monophyletic termite-associated Pseudoxylaria group [9,10,11,12,13], which diverged from the free-living members of the genus Xylaria (Fig. 2B, Figure S1S4).

As our seven isolates covered a larger portion of the previously reported phylogenetic diversity of the termite-associated subgenus, we elaborated on genomic characteristics of our isolates to uncover features of the termite-associated ecology of Pseudoxylaria. Indeed, comparative genome analysis of the South African Pseudoxylaria isolates with publicly available genomes of free-living Xylaria species of similar genome quality revealed significantly reduced genome assembly lengths in Pseudoxylaria with reduced numbers of predicted genes per genome (Table S4). Comparison of the annotated mitochondrial (mt) genomes (Figure S5, Table S8) also indicated that all seven mt genomes were shorter in length (assembly lengths: 18.5–63.8 kbp) compared to the, albeit few, publicly available mitochondrial genomes of free-living species (48.9–258.9 kbp). The reduction in mitochondrial genome size also corresponded to a significantly reduced mean number of annotated genes (7.6) and tRNAs (14.3) in Pseudoxylaria spp. compared to on average 30.0 (annotated genes) and 25.8 (tRNAs) found in free-living species.

Analysis of the abundance and composition of transposable elements (TEs), which account for up to 30–35% of the genomes of (endo)parasitic fungi due to the expansion of certain gene families [20, 21], showed that the mean total numbers of TEs across Pseudoxylaria spp. genomes were comparable (1530), but the numbers were reduced compared to free-living Xylaria species (3690) (Table S9). We also identified high variation in the TE composition across genomes (1.5–9.9 %), comparable to what was observed in free-living Xylaria spp. (1.3–8.1 %), with reductions in long terminal repeat retrotransposons (LTRs: Copia and unknown LTRs) in two inverted tandem repeat DNA transposons (TIRs; CACTA, Mutator and hAT). As Pseudoxylaria spp. contained increased numbers of non-ITR transposons of the helitron class and LTRs of the Gypsy class compared to Xylaria strains, we concluded that Pseudoxylaria exhibits no typical features of an (endo)parasitic lifestyle, but that the overall composition and the reduced numbers of TEs could serve as a fingerprint to distinguish the genetically divergent Pseudoxylaria taxa.

Repertoire of carbohydrate-active enzymes indicates specialized substrate use

As the fungus comb is mostly composed of partially-digested plant material interspersed with fungal mycelium of the termite mutualist [3], we anticipated that Pseudoxylaria should exhibit features of a substrate specialist similar to the fungal mutualist Termitomyces, which should be reflected in a Carbohydrate-Active enzyme (CAZyme) repertoire distinguishable from  free-living saprophytic Xylaria species [22,23,24]. In particular, numbers and composition of redox-active enzymes (e.g., benzoquinone reductase (EC 1.6.5.6/EC 1.6.5.7), catalase (EC 1.11.1.6), glutathione reductase (EC 1.11.1.9), hydroxy acid oxidase (EC 1.1.3.15), laccase (EC 1.10.3.2), manganese peroxidase (EC 1.11.1.13), peroxiredoxin (EC 1.11.1.15), superoxide dismutase (EC 1.15.1.1), dye-decolorization or unspecific peroxygenase (EC 1.11.2.1), Table S10), which catalyze the degradation of lignin-rich biomass, were expected to differ between free-living strains and substrate specialists [22].

Identification of CAZymes using Peptide Pattern Recognition (PPR) revealed that Pseudoxylaria genomes encoded on average a reduced number of CAZymes (mean 264) compared to the free-living taxa in the family Xylaria (mean 367 CAZymes, pANOVA; F = 41.4, p = 3.5 × 10–8, pairwise p = 1.69 × 10–7) (Fig. 3A, B, Figure S6), but similar numbers to those identified in Termitomyces (mean 265, pairwise p = 0.949).

Fig. 3: Comparison of carbohydrate-active enzymes (CAZymes) in Xylaria, Pseudoxylaria and the fungal mutualist Termitomyces.
figure 3

A Predicted CAZymes, B Principal Coordinates Analysis (PCoA) of predicted CAZyme families, and C heatmap of representatives CAZyme families in the predicted proteomes of free-living Xylaria, Termitomyces and Pseudoxylaria species.

Overall, significant differences in the composition of CAZymes were observed [8], most notably in the reduction of auxiliary activity enzymes (AA), carbohydrate esterases (CE), glycosyl hydrolases (GH), and polysaccharide lyases (PL). The most significant reduction was observed in the AA3 family (Fig. 3C), which typically displays a high multigenicity in wood-degrading fungi as many  enzymes of this family catalyze the oxidation of alcohols or carbohydrates with the concomitant formation of hydrogen peroxide or hydroquinones thereby supporting lignocellulose degradation by other AA-enzymes, such as peroxidases (AA2). Similarly, although to a lesser extent, reduced numbers within the related AA1 family were detected, which included oxidizing enzymes like laccases, ferroxidases, and laccase-like multicopper oxidases. Along these lines, glycosyl hydrolases of the GH3 and GH5 family, including enzymes responsible for degradation of cellulose-containing biomass and xylose, were less abundant. We also noted that all Pseudoxylaria lacked homologs of the unspecific peroxygenases (UPO; EC 1.11.2.1), while almost all free-living Xylaria spp. and the fungal symbiont Termitomyces harbored at least one or two copies of similar gene sequences.

Pseudoxylaria shows reduced biosynthetic capacity for secondary metabolite production

A healthy termite colony is engulfed in several layers of social immunity [5, 6], which pose a constant selection pressure on associated and potentially antagonistic microbes. As Pseudoxylaria evolved measures to remain inconspicuously present within the comb environment, we hypothesized that one of the possible adaptations to evade hygiene measures of termites could be reflected in a reduced biosynthetic capability to produce antibiotic or volatile natural products, which often serve as infochemicals triggering defense mechanisms [25,26,27], or as alarm pheromones [4, 28].

The biosynthesis of secondary metabolites is encoded in so called Biosynthetic Gene Cluster (BGC) regions. We explored the abundance and diversity of encoded BGCs using FungiSMASH 6.0.0 and manually cross-checked the obtained data set by BLAST to account for possible biases due to varying genome qualities across strains of both groups [29]. Overall, the herein investigated Xylaria genomes harbored on average 90 BGCs per genome, while Pseudoxylaria encoded on average 45 BGCs (Fig. 4, Figure S7).

Fig. 4: Similarity network analysis of biosynthetic gene clusters.
figure 4

Comparative analysis of termite associated-associated Pseudoxylaria isolates (strains 1–7, red circles) and free-living Xylaria (strains 8–18, green circles) with BiG-SCAPE 1.0 annotations (blue hexagon) ACR ACR toxin, Alt alternariol, Bio biotin, Chr chromene, Cyt cytochalasins, Cur curvupalide, Dep depiudecin, Fus fusarin, Gri griseofulvin, Mon monascorubin, MSA 6-methylsalicylic acid, Pho phomasetin, Sol solanapyrone, Swa swasionine, Xen xenolozoyenone, Xsp xylasporins, Xyl xylacremolide. Singletons are not shown.

The nature and relatedness of the BGCs were analyzed by creating a curated similarity network analysis using BiG-SCAPE 1.0 [30]. Overall, 28 orthologous BGCs were shared across all genomes, including the biosynthesis of polyketides like 6-methylsalicylic acid (MSA), chromenes (Chr) and polyketide-non-ribosomal peptide (PKS-NRPS) hybrids like the cytochalasins (Cyt) [31]. Furthermore, five BGC networks, which were shared by Pseudoxylaria and Xylaria, contained genes encoding natural product modifying dimethylallyltryptophan synthases (DMATS). In contrast, and despite the significant reduction in the biosynthetic capacity within Pseudoxylaria genomes [29], about 29 BGC networks were unique to Pseudoxylaria and thus could possibly relate to the comb-associated lifestyle (Figure S8 and S9). Notably, Pseudoxylaria genomes lacked genes encoding ribosomally synthesized and posttranslationally modified peptides (RiPPs) or halogenases. In comparision, free-living Xylaria spp. harbored at least one sequence encoding a RiPP, and up to two orthologous sequences encoding putative halogenases. In contrast, a reduced average number of terpene synthases (TPS) in Pseudoxylaria (9 TPS) compared to free-living Xylaria (18 TPS) was detected, which included three BGCs encoding TPSs that were unique to Pseudoxylaria.  In comparison, genomes of the fungal mutualist Termitomyces were reported to encode for about 20-25 terpene cyclases, but haboured only about two loci containing genes for a PKS and NRPS each [24].

Manual BLAST searches were conducted to identify BGCs that could be putatively assigned to previously isolated metabolites from Pseudoxylaria (vide infra Fig. 7, Figure S8) [32, 33]. Using e.g., the known NRPS-PKS-hybrid cluster sequence ccs (Aspergillus clavatus) of cytochalasins as query, an orthologous BGC, here named cytA, was identified in the cytochalasin-producing strain X802 [34]. Although the putative PKS-NRPS hybrid and CcsA shared 60 % identical amino acids (aa), the sequences of the accessory enzymes were less related to CcsC-G (45–47% identical aa) and the BGC in X802 lacked a gene of a homologue to ccsB. Similarly, five free-living Xylaria species carried orthologous gene loci (Xylaria sp. BCC 1067, Xylaria sp. MSU_SB201401, X. flabelliformis G536, X. grammica EL000614, and X. multiplex DSM 110363) supporting previous isolation reports of cytochalasins with varying structural features. Furthermore, three Pseudoxylaria strains (X187, and closely related Mn153, and Mn132) were found to share a highly similar PKS-NRPS hybrid BGC (99–100 % identical aa, named xya), which likely encodes for the enzymatic production of previously identified xylacremolides [32]. Four Pseudoxylaria strains (X802, Mn132, Mn153, and X187) also shared a BGC (50–98 % amino acid identity) resembling the fog BGC (Aspergillus ruber) [35, 36], which putatively encodes the biosynthetic machinery to produce xylasporin/cytosporin-like metabolites. In this homology search, we also uncovered that fog-like BGC arrangements are likely more common than previously anticipated, as clusters with similar arrangements and identity were also found in genomes of Rosellinia necatrix, Pseudomasariella vexata, Stachybotrys chartarum, and Hyaloscypha bicolor (Fig. 4, Figure S8).

A detailed analysis of the fog-like cluster arrangements within Pseudoxylaria genomes revealed – similar to homologs of the ccs cluster – variation in the abundance and arrangement of several accessory genes coding for a cupin protein (pxF), a short chain oxidoreductase (pxB; SDR), and an additional SnoaL-like polyketide cyclase (pxP), which could account for the production of strain-specific structural congeners (vide infra, Fig. 7).

Change of nutrient sources causes dedicated transcriptomic changes in Pseudoxylaria

To further solidify our in silico indications of substrate specialization with comb material as preferred substrate and fungus garden as environment, we analyzed Pseudoxylaria growth on different media (PDA, and reduced medium 1/3-PDA) including comb-like agar matrices (wood-rice medium (WRM), agar-agar or 1/3-PDA medium containing lyophilized (dead) Termitomyces sp. T112 biomass (T112, respectively T112-PDA), PDB covering glass-based surface-structuring elements (GB), Table S11S14).

Cultivation of Pseudoxylaria on agar-agar containing lyophilized biomass of Termitomyces (T112) as the sole nutrient source allowed Pseudoxylaria to sustain growth, although to a reduced extent compared to growth on nutrient-rich PDA medium (Table S3). Wood-rice medium (WRM) induced comparable growth rates as observed on PDA and also the appearance of phenotypic stromata.

To investigate the influence of these growth conditions on the transcriptomic level, we harvested RNA from vegetative mycelium after growth on comb-like media (WRM, T112, T112-PDA, and GB), PDA, and reduced medium 1/3-PDA (Fig. 5A). The most significant transcript changes (normalized to data obtained from growth on PDA) were observed for genes coding for specific CAZymes including several redox active enzymes (Fig. 5B). The 30 most variable transcripts coded for specific glycoside hydrolases (GH), lytic polysaccharide monooxygenases (AA), ligninolytic enzymes, and a glycoside transferase (GT). Similarly, chitinases (CHT2; CHT4; CHI2; CHI4) were upregulated (up to 243-fold on T112) under almost all conditions compared to PDA, but some of these specific transcript changes were exclusive to growth on Termitomyces biomass or artificial comb material (WRM) suggesting the ability to regulate and increase chitin metabolism if necessary [37].

Fig. 5: Transcriptomic analysis of Pseudoxylaria sp. X802 in dependence of growth conditions.
figure 5

A Representative pictures of Pseudoxylaria sp. X802 growing on PDA, PDB on glass beads (GB), wood-rice medium (WRM), and agar-agar medium containing lyophilized Termitomyces sp. T112 biomass (T112). B Heatmap of the most variable transcripts coding for CAZymes (red), redox enzymes (orange), secondary metabolite-related core genes (green), and more specifically on key genes within the boundaries of cytochalasin (turquoise) and xylasporin/cytosporin BGCs (blue). RNA was obtained from vegetative mycelium after growth on PDA, reduced medium (1/3-PDA), PDB on glass beads (GB), wood-rice medium (WRM), 1/3-PDA-medium enriched with Termitomyces sp. T112 biomass (T112-PDA) and agar-agar medium containing lyophilized Termitomyces biomass (T112). Transcript counts are shown as log10 transformed transcripts per million (top; TPM). Significance of the changes in transcript counts are compared to control (X802 grown on PDA) and depicted in log-10 transformed p values.

When X802 was grown on T112 (agar matrix containing lyophilized Termitomyces sp. T112 biomass), we observed a >400-fold increase in the expression of transcripts encoding glycoside hydrolases in the GH43 family, GH7 (~140-fold), GH3, and GH64 (5–12-fold). Similarly, transcripts for a putative mannosyl-oligosaccharide-α-1,2-mannosidase (MNS1B; 8.2-fold), chitinase CHT4 (2.9-fold), β-glucosidase BGL4 (5.7-fold), and copper-dependent lytic polysaccharide monooxygenase AA11 (1.6-fold) were significantly upregulated. Growth on WRM (wood-rice medium) or T112 (Termitomyces sp. T112 biomass) also caused a significant upregulation of genes coding for glycoside transferase GT2, glycoside hydrolases GH15, GH3, and aldehyde oxidase AOX1, which indicated the ability to expand the degradation portfolio if necessary. Along these lines, specific transcript levels were reduced when X802 was grown on T112, in particular class II lignin-modifying peroxidases (AA2), carbohydrate-binding module family 21 (CBM21), multicopper oxidases (AA1), secreted β-glucosidases (SUN4), and glycoside hydrolases GH16, and GH128.

When the fungus was challenged with lignocellulose-rich WRM medium, higher transcript levels putatively assigned to glutathione peroxidase (GXP2), superoxide dismutase (SOD2), and laccases (LCC5) were observed, which indicated that despite the reduced wood-degrading capacity, Pseudoxylaria activates available enzymatic mechanisms to degrade the provided material and respond to the resulting oxidative stress. Cultivation on GB (glass-based surfaces covered in liquid PD broth) influenced the expression of certain genes coding for glycoside hydrolases (GH64, GH76, GH72, GH128, BGL4) and lytic polysaccharide monooxygenases (AA1, AA2, AA11), presumably enabling the fungus to utilize soluble carbohydrates.

To test the hypothesis that the presence of Termitomyces biomass stimulates secondary metabolite production in Pseudoxylaria to eventually displace the mutualist, we also analyzed changes in the transcript levels of core BGC genes that encode the production of bioactive secondary metabolites. Overall, only slight transcript variations were detectable within the  most variable expressed genes. (Fig. 5B). Cultivation on GB, WRM, and T112 media caused lower transcript levels of genes coding for terpene synthase TC1, polyketide synthases (PKS7, PKS8), and the NRPS-like1, while an upregulation of NRPS-like2 on WRM (2.5-fold), and of PKS7 (1.7-fold) on reduced 1/3-PDA medium was observed.

Transcript levels of core genes within BGCs assigned to cytochalasines (cyt) or xylasporins/cytosporins (px), e.g., remained nearly constant, while minor transcript level variations of neighboring genes and reduced transcript levels for pxI (flavin-dependent monooxygenase), pxH (ABBA-type prenyltransferase), pxF (cupin fold oxidoreductase), and pxJ (short-chain dehydrogenase) were detectable. Hence, it was concluded that the presence of Termitomyces biomass only weakly triggers secondary metabolite production in general, but varying transcript levels coding for decorating enzymes could cause substantial structural alterations within the produced natural product composition. It was also notable that transcript levels of the terpene synthase TC1 were downregulated, which could cause a reduced production level of specific volatiles.

Pseudoxylaria antagonizes Termitomyces growth and metabolizes fungal biomass

The growth behavior of Pseudoxylaria isolates was also analyzed in co-culture assays with Termitomyces. As expected from prior studies, both fungi showed reduced growth when co-cultured on agar plates, often causing the formation of zones of inhibition (ZOI) between the fungal colonies (Fig. 6A–D, Table S11S14) [7]. When fungus-fungus co-cultures were maintained for longer than two weeks on agar plates, Pseudoxylaria started to overcome the ZOI and overgrew Termitomyces via the extension of aerial mycelium. The observation was even more pronounced when co-cultures were performed on wood-rice medium (WRM), where Pseudoxylaria remained the only visible fungus after two weeks.

Fig. 6: Co-cultivation of Pseudoxylaria sp. X170LB and Termitomyces sp. T112 and results of isotope fractionation experiments.
figure 6

Representative pictures of fungal growth and co-cultivation of A Termitomyces sp. T112, B Pseudoxylaria sp. X170LB, C co-culture of Pseudoxylaria sp. X802 and Termitomyces sp. T153 exhibiting a ZOI, in which X802 overgrowths T153 in proximity to the interaction zone (red arrow), and D Pseudoxylaria sp. X802 growing on the surface of a living Termitomyces sp. T153 culture. E, F Shown is the relative change in the carbon isotope pattern (δ13C values, ± standard deviation, with n = 3) of lipid and carbohydrate fractions isolated from fungal biomass of Termitomyces sp. T112, Pseudoxylaria sp. X170LB, and Pseudoxylaria sp. X170LB cultivated on vegetative Termitomyces sp. T112 biomass (T112ǂ), or on lyophilized Termitomyces sp. T112 biomass (T112). Fungal strains were grown on E medium with natural 13C abundance and F medium artificially enriched in 13C content.

To verify whether Pseudoxylaria consumes Termitomyces or even partially degrades specific metabolites present within the fungal biomass, we pursued stable isotope fingerprinting commonly used to analyse trophic relations [38, 39]. This diagnostic method relies on measurable changes in the bulk stable isotope composition, because biosynthetic enzymes preferentially convert lighter metabolites enriched in 12C compared to their heavier 13C-enriched congeners. This intrinsic kinetic isotope effect results in an overall change in the 13C/12C ratio of the respective educts and products, in particular in biomarkers such as phospholipid fatty acids, carbohydrates, and amino acids. Using this isotope enrichment effect, we determined the natural trophic isotope fractionation of 13C in lipids and carbohydrates produced by Termitomyces sp. T112 and Pseudoxylaria sp. X170LB. For clearer differentiation, both fungi were cultivated on PDA medium containing naturally abundant 13C/12C, Fig. 6E) and on PDA medium enriched with 13C-glucose (Fig. 6F). Lipids and carbohydrates were isolated from mycelium harvested after 21 days (Fig. 6E, Table S15).

Analysis of fungal carbohydrate and lipid-rich metabolite fractions by Elemental Analysis-Isotope Ratio Mass Spectrometry (EA-IRMS) [40, 41] uncovered that under normal growth conditions (full medium), Termitomyces sp. T112 and Pseudoxylaria sp. X170LB showed only a slight negative trophic fractionation of stable carbon isotopes (δ13C/12C ratio (expressed as δ13C values [‰]), Fig. 6F) within the carbohydrate fractions (T112: −1.2 ‰; for X170LB: −1.3 ‰), and expectedly a stronger depletion in the lipid fraction (T112: −6.7 ‰, and less pronounced for X170LB: −3.1 ‰). To determine if Pseudoxylaria metabolizes Termitomyces biomass, the isotope pattern of metabolites derived from Pseudoxylaria thriving on living biomass of Termitomyces (T112ǂ) was analysed next. Here, an overall positive carbon isotope (13C/12C) fractionation by approximately +0.6 ‰ relative to the control medium was detectable, while the δ13C values of lipids remained largely unchanged (Fig. 6F, Table S15). These results suggested that Pseudoxylaria might pursue a preferential uptake of Termitomyces-derived carbohydrates.

In a last experiment, Pseudoxylaria was grown on lyophilized (dead) Termitomyces biomass (T112) as sole food source. In this experiment, the isotope fingerprint showed converging δ13C values of −1.9 ‰ (relative to the media) for both carbohydrate and lipid fractions, which indicated that Pseudoxylaria is able to simultaneously metabolize and cycle carbohydrates as well as lipids resulting in the equilibration of isotopic levels between carbohydrates and lipids. Thus, it was concluded that in nature, Pseudoxylaria likely harvests nutrients firstly from vegetative Termitomyces, and then—if possible—subsequently degrades dying or dead mycelium.

Pseudoxylaria produces antimicrobial secondary metabolites

Based on the observation that Pseudoxylaria antagonizes growth of Termitomyces, we questioned if the formation of a ZOI might be caused by the secretion of Pseudoxylaria-derived antimicrobial metabolites [26, 42]. Thus, we performed an ESI(+)-HRMS/MS based metabolic survey using the web-based platform “Global Natural Product Social Molecular Networking” (GNPS) [43] to correlate the encoded biosynthetic repertoire of Pseudoxylaria with secreted metabolites.

A partial similar metabolic repertoire across the six analyzed strains was detectable and allowed us to match some of the detectable chemical features and previously isolated metabolites to the predicted shared BGCs, such as antifungal and histone deacetylase inhibitory xylacremolides (Xyl; X187/Mn132) [32, 33], pseudoxylaramides (Psa; X187/Mn132) [32], antibacterial pseudoxylallemycins (Psm; X802/OD126) [18], xylasporin/cytosporins (Xsp; X802/OD126/X187/Mn132) [36], and cytotoxic cytochalasins (X802/OD126) (Fig. 7A and B) [18].

Fig. 7: Comparative metabolomic analysis of six Pseudoxylaria strains (OD126 (red), Mn132 (orange), X170 (black), X187 (green), X3.2 (yellow) and X802 (blue)).
figure 7

A Overview of the GNPS network. Identified metabolite clusters xylacremolides (Xyl; X187/Mn132) [32, 33], pseudoxylaramides [32] (Psa; X187/Mn132), pseudoxylallemycins (Psm; X802/OD126) [18], xylasporin/cytosporins (Xsp; X802/OD126/X187/Mn132) and cytochalasins (X802/OD126) [18]. B xylasporin/cytosporin-related cluster formed by nodes from X802 (blue), OD126 (red), X187 (green) and Mn132 (orange). C Chemical structures of natural products isolated from Pseudoxylaria species and related compounds. Red box highlights proposed structures of isolated xylasporin G and I in this study.

A cluster that contained MS2 signals of molecular ions assigned to the cytosporin/xylasporin family, which was shared by at least four strains, caught our attention as a certain degree of structural diversity of xylasporin/cytosporin family was predicted from the comparison of their respective BGCs. The assigned nodes of this GNPS cluster split into two subclusters with only very little overlap between both regions. Analysis of the mass fragment shifts suggested that both subclusters belong to two different families of xylasporin/cytosporin congeners (Figure S9). To verify these deductions, we pursued an MS-guided purification of xylasporin/cytosporins from chemical extracts of Pseudoxylaria sp. X187, which yielded xylasporin G (3.23 mg, pale-yellow solid) and xylasporin I (1.75 mg, pale-yellow solid). The sum formulas of xylasporin G and xylasporin I were determined to be C17H22O5 (calcd. for [M + H]+ C17H23O5+ = 307.1540, found 307.15347, −1.726 ppm) and C17H24O5 (calcd. for [M + H]+ C17H25O5+ = 309.1697, found 309.1691, −1.68 ppm) by ESI-(+)-HRMS and were predicted to have six degrees of unsaturation (Fig. 7B, Figure S10, Table S16S17). Planar structures were deduced by comparative 1D and 2D NMR analyses, which revealed the presence of an unsaturated polyketide chain that matched the unsaturation degree and the anticipated structural variation from cytosporins (Fig. 7C, Figure S11S25).

To evaluate if Pseudoxylaria-derived culture extracts and produced natural products (e.g., cytochalasins) are responsible for the observed antimicrobial activity, standardized antimicrobial activity assays were performed (Table S17, S18 and Figure S26). As neither culture extracts nor single compounds exhibited significant antimicrobial activity, they could not be held fully accountable for the antagonistic behavior in co-cultures. Thus, we hypothesized that the observed ZOI might be caused by yet unknown effects like nutrient depletion or bioactive enzymes.

Pseudoxylaria has a negative impact on the fitness of insect larvae

Due to the production of structurally diverse and weakly antimicrobial secondary metabolites, we questioned if mycelium of Pseudoxylaria exhibits intrinsic insecticidal or other insect-detrimental activities, which could discourage or ward off grooming behavior of termite workers. Due to the technical challenges associated with behavioral studies of termites, we evaluated instead the effect of Pseudoxylaria biomass on Spodoptera littoralis, a well-established insect model system and a destructive agricultural lepidopterous pest [44, 45]. When S. littoralis larvae were fed with mycelium-covered agar plugs of Pseudoxylaria sp. X802, a clear decrease of the relative growth rate (RGR) and decline in survival was observed (Fig. 8: treatment D (green), Table S19, S20) compared to feeding with untreated agar plugs (treatment A (black)). In comparison, when larvae were fed with agar plugs covered with the fungal mutualist Termitomyces sp. T153 (treatment B (blue)) an increased growth rate of larvae was observed.

Fig. 8: Effect of Termitomyces sp. T153 and Pseudoxylaria sp. X802 mycelia on the relative growth rate and survival of S. littoralis larvae.
figure 8

Insects were fed with either A PDA, B PDA agar plug covered with vegetative Termitomyces sp. T153, C PDA agar plug from which vegetative Termitomyces sp. T153 was removed prior to feeding, D PDA agar plug covered with vegetative Pseudoxylaria sp. X802 mycelium, and E PDA agar plug from which vegetative Pseudoxylaria sp. X802 mycelium was removed prior to feeding. All experiments were performed with 25 replicates per treatment, a duration of 10 days, and larval weights and survival rates were recorded every day. Statistical significances were determined using ANOVA on ranks (p < 0.001, n = 25) followed by Dunn’s post-hoc test (indicated by different letters at the alpha = 0.05 level).

Additionally, S. littoralis larvae were also fed agar plugs that had been cleaned from fungal mycelium prior to feeding to test if secreted metabolites and/or depletion of nutrients within the agar matrix might have an impact on RGR and survival. Here, it was surprising to note that agar-plugs derived from Pseudoxylaria sp. X802 cultures resulted in the death of all treated caterpillars within six days (treatment E (yellow)). In contrast, feeding with agar plugs previously covered with Termitomyces mycelium (treatment C (red)) caused the survival of almost all caterpillars until the end of the experiment, although a slight decline on RGR was observed compared to treatment B (Fig. 8). Thus, an overall beneficial nutritional effect of Termitomyces was clearly visible, although a minor negative effect of nutrient depletion within the agar environment during fungal growth could not be fully excluded. Overall, we corroborated from these results that Pseudoxylaria exhibits a pronounced negative effect on insect growth and survival, likely due to the combined effect of harmful metabolite secretion, indigestible fungal mycelium and/or nutrient depletion of the growth environment.

Read more here: Source link