Manzin, A., Mallus, F., Macera, L., Maggi, F. & Blois, S. Global impact of Torque teno virus infection in wild and domesticated animals. J. Infect. Dev. Countries 9, 562–570 (2015).
Biagini, P. et al. Family Anelloviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, 331–341 (2011).
Kamada, K., Kamahora, T., Kabat, P. & Hino, S. Transcriptional regulation of TT virus: Promoter and enhancer regions in the 1.2-kb noncoding region. Virology 321, 341–348 (2004).
Kapusinszky, B. et al. Local virus extinctions following a host population bottleneck. J. Virol. 89, 8152–8161 (2015).
Eibach, D. et al. Viral metagenomics revealed novel betatorquevirus species in pediatric inpatients with encephalitis/meningoencephalitis from Ghana. Sci. Rep. 9, 1–10 (2019).
Okamoto, H. et al. Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness. Virology 277, 368–378 (2000).
Okamoto, H. et al. Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J. Gen. Virol. 83, 1291–1297 (2002).
Hu, Y.-W. et al. Molecular detection method for all known genotypes of TT Virus (TTV) and TTV-like viruses in thalassemia patients and healthy individuals. J. Clin. Microbiol. 43, 3747–3754 (2005).
Rosario, K., Duffy, S. & Breitbart, M. A field guide to eukaryotic circular single-stranded DNA viruses: Insights gained from metagenomics. Arch. Virol. 157, 1851–1871 (2012).
Martínez-Guinó, L., Ballester, M., Segalés, J. & Kekarainen, T. Expression profile and subcellular localization of Torque teno sus virus proteins. J. Gen. Virol. 92, 2446–2457 (2011).
Peters, M. A., Jackson, D. C., Crabb, B. S. & Browning, G. F. Chicken anemia virus VP2 is a novel dual specificity protein phosphatase. J. Biol. Chem. 277, 39566–39573 (2002).
Zheng, H. et al. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with IkappaB kinases. J. Virol. 81, 11917–11924 (2007).
Walker, P. J. et al. Recent changes to virus taxonomy ratified by the international committee on taxonomy of viruses (2022). Arch. Virol. doi.org/10.1007/s00705-022-05516-5 (2022).
Walker, P. J. et al. Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2021). Arch. Virol. 166, 2633–2648 (2021).
Papineau, A. et al. Genome organization of Canada goose coronavirus, a novel species identified in a mass die-off of Canada geese. Sci. Rep. 9, 5954 (2019).
Fisher, M. et al. Discovery and comparative genomic analysis of elk circovirus (ElkCV), a novel circovirus species and the first reported from a cervid host. Sci. Rep. 10, 19548 (2020).
Lung, O. et al. First whole-genome sequence of Cervid atadenovirus A outside of the United States from an Adenoviral hemorrhagic disease epizootic of black-tailed deer in Canada. Sci. Rep. doi.org/10.1101/2022.02.10.479879 (2022).
Wylie, T. N., Wylie, K. M., Herter, B. N. & Storch, G. A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 25, 1910–1920 (2015).
Lung, O. et al. Comparative Genomics Analysis between frog Virus 3-like Ranavirus from the First Canadian Reptile Mortality Event and Similar Viruses from Amphibians. www.researchsquare.com/article/rs-943897/v1 (2021). doi.org/10.21203/rs.3.rs-943897/v1.
Kruczkiewicz, P. peterk87/nf-villumina. github.com/peterk87/nf-villumina (2020).
Bushnell, B. BBMap. sourceforge.net/projects/bbmap/.
fastp: An Ultra-Fast All-in-One FASTQ Preprocessor | Bioinformatics | Oxford Academic. academic.oup.com/bioinformatics/article/34/17/i884/5093234.
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: Rapid and sensitive classification of metagenomic sequences. genome res. 26, 1721–1729 (2016).
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, 1–10 (2017).
Seemann, T. tseemann/shovill. github.com/tseemann/shovill (2020).
Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Wick, R. rrwick/Porechop. github.com/rrwick/Porechop (2020).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Bushnell, B., Rood, J. & Singer, E. BBMerge: Accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256 (2019).
Puigbò, P., Bravo, I. G. & Garcia-Vallve, S. CAIcal: A combined set of tools to assess codon usage adaptation. Biol. Direct 3, 38 (2008).
Kumar, N. et al. Revelation of influencing factors in overall codon usage bias of equine influenza viruses. PLoS ONE 11, e0154376 (2016).
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
Li, L. et al. Exploring the virome of diseased horses. J. Gen. Virol. 96, 2721–2733 (2015).
Bendinelli, M. et al. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin. Microbiol. Rev. 14, 98–113 (2001).
Deb, B., Uddin, A. & Chakraborty, S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch. Virol. 166, 461–474 (2021).
Li, G. et al. Genetic analysis and evolutionary changes of the torque teno sus virus. Int. J. Mol. Sci. 20, E2881 (2019).
Chen, F. et al. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat. Ecol. Evol. 4, 589–600 (2020).
Asim, M., Singla, R., Gupta, R. K. & Kar, P. Clinical & molecular characterization of human TT virus in different liver diseases. Indian J. Med. Res. 131, 545–554 (2010).
Focosi, D. et al. Torquetenovirus viremia kinetics after autologous stem cell transplantation are predictable and may serve as a surrogate marker of functional immune reconstitution. J. Clin. Virol. 47, 189–192 (2010).
Maggi, F. et al. TT virus in the nasal secretions of children with acute respiratory diseases: Relations to viremia and disease severity. J. Virol. 77, 2418–2425 (2003).
Gergely, P., Perl, A. & Poór, G. Possible pathogenic nature of the recently discovered TT virus: Does it play a role in autoimmune rheumatic diseases?. Autoimmun. Rev. 6, 5–9 (2006).
Blois, S. et al. High prevalence of co-infection with multiple Torque teno sus virus species in Italian pig herds. PLoS ONE 9, e113720 (2014).
Sibila, M. et al. Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms. Vet. Microbiol. 139, 213–218 (2009).
Kekarainen, T., Sibila, M. & Segalés, J. Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs in Spain. J. Gen. Virol. 87, 833–837 (2006).
Kekarainen, T. & Segalés, J. Torque teno sus virus in pigs: An emerging pathogen?. Transbound Emerg. Dis. 59(Suppl 1), 103–108 (2012).
Krakowka, S. et al. Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2. Am. J. Vet. Res. 69, 1615–1622 (2008).
Aramouni, M. et al. Torque teno sus virus 1 and 2 viral loads in postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS) affected pigs. Vet. Microbiol. 153, 377–381 (2011).
Savic, B. et al. Detection rates of the swine torque teno viruses (TTVs), porcine circovirus type 2 (PCV2) and hepatitis E virus (HEV) in the livers of pigs with hepatitis. Vet. Res. Commun. 34, 641–648 (2010).
Rammohan, L. et al. Increased prevalence of torque teno viruses in porcine respiratory disease complex affected pigs. Vet. Microbiol. 157, 61–68 (2012).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Read more here: Source link