Discovery and comparative genomic analysis of a novel equine anellovirus, representing the first complete Mutorquevirus genome

  • Manzin, A., Mallus, F., Macera, L., Maggi, F. & Blois, S. Global impact of Torque teno virus infection in wild and domesticated animals. J. Infect. Dev. Countries 9, 562–570 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Biagini, P. et al. Family Anelloviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, 331–341 (2011).

  • Kamada, K., Kamahora, T., Kabat, P. & Hino, S. Transcriptional regulation of TT virus: Promoter and enhancer regions in the 1.2-kb noncoding region. Virology 321, 341–348 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapusinszky, B. et al. Local virus extinctions following a host population bottleneck. J. Virol. 89, 8152–8161 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eibach, D. et al. Viral metagenomics revealed novel betatorquevirus species in pediatric inpatients with encephalitis/meningoencephalitis from Ghana. Sci. Rep. 9, 1–10 (2019).

    Article 

    Google Scholar
     

  • Okamoto, H. et al. Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness. Virology 277, 368–378 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okamoto, H. et al. Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J. Gen. Virol. 83, 1291–1297 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Y.-W. et al. Molecular detection method for all known genotypes of TT Virus (TTV) and TTV-like viruses in thalassemia patients and healthy individuals. J. Clin. Microbiol. 43, 3747–3754 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosario, K., Duffy, S. & Breitbart, M. A field guide to eukaryotic circular single-stranded DNA viruses: Insights gained from metagenomics. Arch. Virol. 157, 1851–1871 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Guinó, L., Ballester, M., Segalés, J. & Kekarainen, T. Expression profile and subcellular localization of Torque teno sus virus proteins. J. Gen. Virol. 92, 2446–2457 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, M. A., Jackson, D. C., Crabb, B. S. & Browning, G. F. Chicken anemia virus VP2 is a novel dual specificity protein phosphatase. J. Biol. Chem. 277, 39566–39573 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with IkappaB kinases. J. Virol. 81, 11917–11924 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, P. J. et al. Recent changes to virus taxonomy ratified by the international committee on taxonomy of viruses (2022). Arch. Virol. doi.org/10.1007/s00705-022-05516-5 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, P. J. et al. Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2021). Arch. Virol. 166, 2633–2648 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papineau, A. et al. Genome organization of Canada goose coronavirus, a novel species identified in a mass die-off of Canada geese. Sci. Rep. 9, 5954 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, M. et al. Discovery and comparative genomic analysis of elk circovirus (ElkCV), a novel circovirus species and the first reported from a cervid host. Sci. Rep. 10, 19548 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lung, O. et al. First whole-genome sequence of Cervid atadenovirus A outside of the United States from an Adenoviral hemorrhagic disease epizootic of black-tailed deer in Canada. Sci. Rep. doi.org/10.1101/2022.02.10.479879 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wylie, T. N., Wylie, K. M., Herter, B. N. & Storch, G. A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 25, 1910–1920 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lung, O. et al. Comparative Genomics Analysis between frog Virus 3-like Ranavirus from the First Canadian Reptile Mortality Event and Similar Viruses from Amphibians. www.researchsquare.com/article/rs-943897/v1 (2021). doi.org/10.21203/rs.3.rs-943897/v1.

  • Kruczkiewicz, P. peterk87/nf-villumina. github.com/peterk87/nf-villumina (2020).

  • Bushnell, B. BBMap. sourceforge.net/projects/bbmap/.

  • fastp: An Ultra-Fast All-in-One FASTQ Preprocessor | Bioinformatics | Oxford Academic. academic.oup.com/bioinformatics/article/34/17/i884/5093234.

  • Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: Rapid and sensitive classification of metagenomic sequences. genome res. 26, 1721–1729 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, 1–10 (2017).

    Article 

    Google Scholar
     

  • Seemann, T. tseemann/shovill. github.com/tseemann/shovill (2020).

  • Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. rrwick/Porechop. github.com/rrwick/Porechop (2020).

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bushnell, B., Rood, J. & Singer, E. BBMerge: Accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puigbò, P., Bravo, I. G. & Garcia-Vallve, S. CAIcal: A combined set of tools to assess codon usage adaptation. Biol. Direct 3, 38 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, N. et al. Revelation of influencing factors in overall codon usage bias of equine influenza viruses. PLoS ONE 11, e0154376 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Exploring the virome of diseased horses. J. Gen. Virol. 96, 2721–2733 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bendinelli, M. et al. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin. Microbiol. Rev. 14, 98–113 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deb, B., Uddin, A. & Chakraborty, S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch. Virol. 166, 461–474 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. Genetic analysis and evolutionary changes of the torque teno sus virus. Int. J. Mol. Sci. 20, E2881 (2019).

    Article 

    Google Scholar
     

  • Chen, F. et al. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat. Ecol. Evol. 4, 589–600 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asim, M., Singla, R., Gupta, R. K. & Kar, P. Clinical & molecular characterization of human TT virus in different liver diseases. Indian J. Med. Res. 131, 545–554 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Focosi, D. et al. Torquetenovirus viremia kinetics after autologous stem cell transplantation are predictable and may serve as a surrogate marker of functional immune reconstitution. J. Clin. Virol. 47, 189–192 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maggi, F. et al. TT virus in the nasal secretions of children with acute respiratory diseases: Relations to viremia and disease severity. J. Virol. 77, 2418–2425 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gergely, P., Perl, A. & Poór, G. Possible pathogenic nature of the recently discovered TT virus: Does it play a role in autoimmune rheumatic diseases?. Autoimmun. Rev. 6, 5–9 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Blois, S. et al. High prevalence of co-infection with multiple Torque teno sus virus species in Italian pig herds. PLoS ONE 9, e113720 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sibila, M. et al. Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms. Vet. Microbiol. 139, 213–218 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kekarainen, T., Sibila, M. & Segalés, J. Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs in Spain. J. Gen. Virol. 87, 833–837 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kekarainen, T. & Segalés, J. Torque teno sus virus in pigs: An emerging pathogen?. Transbound Emerg. Dis. 59(Suppl 1), 103–108 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Krakowka, S. et al. Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2. Am. J. Vet. Res. 69, 1615–1622 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Aramouni, M. et al. Torque teno sus virus 1 and 2 viral loads in postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS) affected pigs. Vet. Microbiol. 153, 377–381 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savic, B. et al. Detection rates of the swine torque teno viruses (TTVs), porcine circovirus type 2 (PCV2) and hepatitis E virus (HEV) in the livers of pigs with hepatitis. Vet. Res. Commun. 34, 641–648 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Rammohan, L. et al. Increased prevalence of torque teno viruses in porcine respiratory disease complex affected pigs. Vet. Microbiol. 157, 61–68 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Read more here: Source link