Quantitation of base substitutions in eukaryotic 5S rRNA: Selection for the maintenance of RNA secondary structure

  • Azad A (1979) Intermolecular base-paired interaction between complementary sequences present near the 3′ ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Nucleic Acids Res 7:1913–1929

    PubMed 

    Google Scholar
     

  • Blanken R, Klotz L, Hinnebusch A (1982) Computer comparison of new and existing criteria for constructing evolutionary trees from sequence data. J Mol Evol 19:9–19

    PubMed 

    Google Scholar
     

  • Bogenhagen D, Brown D (1981) Nucleotide sequences inXenopus 5S DNA required for transcription termination. Cell 24:261–270

    Article 
    PubMed 

    Google Scholar
     

  • Bogenhagen D, Sakonju S, Brown D (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3′ border of the region. Cell 19:27–35

    Article 
    PubMed 

    Google Scholar
     

  • Bubienko E, Cruz P, Thomason J, Borer P (1983) Nearest-neighbor effects in the structure and function of nucleic acids. Prog Nucleic Acid Res Mol Biol 30:41–90

    PubMed 

    Google Scholar
     

  • Cantor C, Schimmel P (1980) Biophysical chemistry, part I: the conformation of biological macromolecules. WH Freeman, San Francisco, p 195


    Google Scholar
     

  • Cedergren R, LaRue B, Grosjean H (1981) The evolving tRNA molecule. CRC Crit Rev Biochem 11:35–104

    PubMed 

    Google Scholar
     

  • Delihas N, Andersen J (1983) Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res 10:7323–7344


    Google Scholar
     

  • DeWachter R, Chen M-W, Vandenberghe A (1982) Conservation of secondary structure in 5S ribosomal RNA: A uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favorable. Biochimie 64:311–329

    PubMed 

    Google Scholar
     

  • Engelke D, Ng S-Y, Shastry B, Roeder R (1980) Specific interaction of a purified transcription factor with an internal control region of 5S RNA gene. Cell 19:717–728

    PubMed 

    Google Scholar
     

  • Erdmann V (1982) Collection of published 5S and 5.8S RNA sequences and their precursors. Nucleic Acids Res 10:r93-r115

    PubMed 

    Google Scholar
     

  • Erdmann V, Huysmans E, Vandenberghe A, DeWachter R (1983) Collection of published 5S and 5.8S RNA sequences. Nucleic Acids Res 11:r105-r133

    PubMed 

    Google Scholar
     

  • Fox G, Woese C (1975) 5S RNA secondary structure. Nature 256:505–507

    Article 
    PubMed 

    Google Scholar
     

  • Kim S-H, Suddath F, Quigley G, McPherson A, Sussman J, Wang A, Seeman N, Rich A (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–440

    PubMed 

    Google Scholar
     

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article 
    PubMed 

    Google Scholar
     

  • Kuntzel H, Piechulla B, Hahn U (1983) Consensus structure and evolution of 5S rRNA. Nucleic Acids Res 11:893–901

    PubMed 

    Google Scholar
     

  • Luehrsen K, Fox G (1981) Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. Proc Natl Acad Sci USA 78:2150–2154

    PubMed 

    Google Scholar
     

  • MacKay R, Spencer D, Schnare M, Doolittle W, Gray M (1982) Comparative sequence analysis as an approach to evaluating structure, function, and evolution of 5S and 5.8S ribosomal RNAs. Can J Biochem 60:480–489

    PubMed 

    Google Scholar
     

  • Metspalu A, Toots I, Saarma M, Villems R (1980) The ternary complex consisting of rat liver ribosomal 5S RNA, 5.8S RNA and protein L5. FEBS Lett 119:81–84

    Article 
    PubMed 

    Google Scholar
     

  • Nazar R, Wildeman A (1983) Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nucleic Acids Res 11:3155–3168

    PubMed 

    Google Scholar
     

  • Needleman S, Wunsch C (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article 
    PubMed 

    Google Scholar
     

  • Novotny J (1982) Matrix program to analyze primary structure homology. Nucleic Acids Res 10:127–131

    PubMed 

    Google Scholar
     

  • Pelham H, Brown D (1980) A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA 77:4170–4174

    PubMed 

    Google Scholar
     

  • Picard B, Wegnez M (1979) Isolation of a 7S particle fromXenopus laevis oocytes: a 5S RNA-protein complex. Proc Natl Acad Sci USA 76:241–245

    PubMed 

    Google Scholar
     

  • Pustell J, Kafatos F (1982) A convenient and adaptable package of DNA sequence analysis programs for microcomputers. Nucleic Acids Res 10:51–59

    PubMed 

    Google Scholar
     

  • Sakonju S, Bogenhagen D, Brown D (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5′ border of the region. Cell 19:13–26

    Article 
    PubMed 

    Google Scholar
     

  • Sakonju S, Brown D, Engelke D, Ng S-Y, Shastry B, Roeder R (1981) The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23:665–669

    Article 
    PubMed 

    Google Scholar
     

  • Stahl D, Luehrsen K, Woese C, Pace N (1981) An unusual 5S rRNA, fromSulfolobus acidicaldarius, and its implications for a general 5S rRNA structure. Nucleic Acids Res 9:6129–6137

    PubMed 

    Google Scholar
     

  • Traub W, Sussman J (1982) Adenine-guanine base pairing in ribosomal RNA. Nucleic Acids Res 10:2701–2709

    PubMed 

    Google Scholar
     

  • Troutt A, Savin T, Curtiss W, Celentano J, Vournakis J (1982) Secondary structure ofBombyx mori andDictyostelium discoideum 5S rRNA from S1 nuclease and cobra venom ribonuclease susceptibility, and computer assisted analysis. Nucleic Acids Res 10:653–664

    PubMed 

    Google Scholar
     

  • Woese C, Gutell R, Gupta R, Noller H (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669

    PubMed 

    Google Scholar
     

  • Read more here: Source link