Alkaline taste sensation through the alkaliphile chloride channel in Drosophila

  • Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liman, E. R., Zhang, Y. V. & Montell, C. Peripheral coding of taste. Neuron 81, 984–1000 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiwull-Schone, H., Kiwull, P., Manz, F. & Kalhoff, H. Food composition and acid-base balance: alimentary alkali depletion and acid load in herbivores. J. Nutr. 138, 431S–434S (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, Y. H. et al. An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359, 1047–1050 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, T., Mack, J. O., Lee, C. M. & Zhang, Y. V. Molecular and cellular basis of acid taste sensation in Drosophila. Nat. Commun. 12, 3730 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kloehn, N. W. & Brogden, W. J. The alkaline taste; a comparison of absolute thresholds for sodium hydroxide on the tip and mid-dorsal surfaces of the tongue. Am. J. Psychol. 61, 90–93 (1948).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liljestrand, G. & Zotterman, Y. The alkaline taste. Acta Physiol. Scand. 35, 380–389 (1956).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paje, F. & Mossakowski, D. pH-preferences and habitat selection in carabid beetles. Oecologia 64, 41–46 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milius, M. et al. A new method for electrophysiological identification of antennal pH receptor cells in ground beetles: the example of Pterostichus aethiops (Panzer, 1796) (Coleoptera, Carabidae). J. Insect Physiol. 52, 960–967 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830–1834 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahanukar, A., Foster, K., van der Goes van Naters, W. M. & Carlson, J. R. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat. Neurosci. 4, 1182–1186 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slone, J., Daniels, J. & Amrein, H. Sugar receptors in Drosophila. Curr. Biol. 17, 1809–1816 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, Y., Moon, S. J. & Montell, C. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc. Natl Acad. Sci. USA 104, 14110–14115 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. V., Ni, J. & Montell, C. The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334–1338 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaeger, A. H. et al. A complex peripheral code for salt taste in Drosophila. eLife 7, e37167 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dweck, H. K. M., Talross, G. J. S., Luo, Y., Ebrahim, S. A. M. & Carlson, J. R. Ir56b is an atypical ionotropic receptor that underlies appetitive salt response in Drosophila. Curr. Biol. 32, 1776–1787 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rimal, S. et al. Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 26, 1432–1442 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganguly, A. et al. Requirement for an otopetrin-like protein for acid taste in Drosophila. Proc. Natl Acad. Sci. USA 118, e2110641118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Alcaniz, J. A. et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 9, 4252 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, J. et al. The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6, 8867 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, H. Y. et al. Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat. Commun. 8, 1484 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montell, C. Drosophila sensory receptors—a set of molecular Swiss army knives. Genetics 217, 1–34 (2021).

  • Ahn, J. E., Chen, Y. & Amrein, H. Molecular basis of fatty acid taste in Drosophila. eLife 6, e30115 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, E. B. et al. Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. eLife 10, e67878 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, R. et al. Molecular basis and homeostatic regulation of Zinc taste. Protein Cell 13, 462–469 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, Y., Poudel, S., Kim, Y., Thakur, D. & Montell, C. Calcium taste avoidance in Drosophila. Neuron 97, 67–74 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wisotsky, Z., Medina, A., Freeman, E. & Dahanukar, A. Evolutionary differences in food preference rely on Gr64e, a receptor for glycerol. Nat. Neurosci. 14, 1534–1541 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, E. G. & Dahanukar, A. Molecular neurobiology of Drosophila taste. Curr. Opin. Neurobiol. 34, 140–148 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benton, R., Vannice, K. S., Gomez-Diaz, C. & Vosshall, L. B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149–162 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatachalam, K. & Montell, C. TRP channels. Annu Rev. Biochem. 76, 387–417 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Sour sensing from the tongue to the brain. Cell 179, 392–402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051–1095 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Remnant, E. J. et al. Evolution, expression, and function of nonneuronal ligand-gated chloride channels in Drosophila melanogaster. G3 6, 2003–2012 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knipple, D. C. & Soderlund, D. M. The ligand-gated chloride channel gene family of Drosophila melanogaster. Pestic. Biochem. Physiol. 97, 140–148 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., MacIntyre, R. J. & Roush, R. T. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate γ-aminobutyric acid subtype A receptor locus. Proc. Natl Acad. Sci. USA 88, 7209–7213 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henderson, J. E., Soderlund, D. M. & Knipple, D. C. Characterization of a putative γ-aminobutyric acid (GABA) receptor β subunit gene from Drosophila melanogaster. Biochem. Biophys. Res. Commun. 193, 474–482 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey, R. J. et al. Sequence of a Drosophila ligand-gated ion-channel polypeptide with an unusual amino-terminal extracellular domain. J. Neurochem. 62, 2480–2483 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cully, D. F., Paress, P. S., Liu, K. K., Schaeffer, J. M. & Arena, J. P. Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J. Biol. Chem. 271, 20187–20191 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gengs, C. et al. The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J. Biol. Chem. 277, 42113–42120 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gisselmann, G., Pusch, H., Hovemann, B. T. & Hatt, H. Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat. Neurosci. 5, 11–12 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnizler, K. et al. A novel chloride channel in Drosophila melanogaster is inhibited by protons. J. Biol. Chem. 280, 16254–16262 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feingold, D., Starc, T., O’Donnell, M. J., Nilson, L. & Dent, J. A. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules. J. Exp. Biol. 219, 2629–2638 (2016).

    PubMed 

    Google Scholar
     

  • Redhai, S. et al. An intestinal zinc sensor regulates food intake and developmental growth. Nature 580, 263–268 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenkel, L. et al. Organization of circadian behavior relies on glycinergic transmission. Cell Rep. 19, 72–85 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dambly-Chaudiere, C. et al. The paired box gene pox neuro: a determinant of poly-innervated sense organs in Drosophila. Cell 69, 159–172 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. V., Aikin, T. J., Li, Z. & Montell, C. The basis of food texture sensation in Drosophila. Neuron 91, 863–877 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanbhag, S. R., Park, S. K., Pikielny, C. W. & Steinbrecht, R. A. Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res. 304, 423–437 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dusek, M., Chapuis, G., Meyer, M. & Petricek, V. Sodium carbonate revisited. Acta Crystallogr. B 59, 337–352 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Khanna, A. & Kurtzman, N. A. Metabolic alkalosis. Respir. Care 46, 354–365 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moon, S. J., Kottgen, M., Jiao, Y., Xu, H. & Montell, C. A taste receptor required for the caffeine response in vivo. Curr. Biol. 16, 1812–1817 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujii, S. et al. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 25, 621–627 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganguly, A. et al. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep. 18, 737–750 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameron, P., Hiroi, M., Ngai, J. & Scott, K. The molecular basis for water taste in Drosophila. Nature 465, 91–95 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z., Wang, Q. & Wang, Z. The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J. Neurosci. 30, 6247–6252 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. & Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140–1151 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betz, H. Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci. 14, 458–461 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duran, C., Thompson, C. H., Xiao, Q. & Hartzell, H. C. Chloride channels: often enigmatic, rarely predictable. Annu. Rev. Physiol. 72, 95–121 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Germann, A. L. et al. Activation and modulation of recombinant glycine and GABAA receptors by 4-halogenated analogues of propofol. Br. J. Pharm. 173, 3110–3120 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X., Chen, H., Michelsen, K., Schneider, S. & Shaffer, P. L. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 526, 277–280 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, T., Situ, A. J. & Ulmer, T. S. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization. Sci. Rep. 6, 29809 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gödde, J. & Krefting, E. R. Ions in the receptor lymph of the labellar taste hairs of the fly Protophormia terraenovae. J. Insect Physiol. 35, 107–111 (1989).

    Article 

    Google Scholar
     

  • Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliason, J., Afify, A., Potter, C. & Matsumura, I. A GAL80 collection to inhibit GAL4 transgenes in Drosophila olfactory sensory neurons. G3 8, 3661–3668 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umezaki, Y., Yasuyama, K., Nakagoshi, H. & Tomioka, K. Blocking synaptic transmission with tetanus toxin light chain reveals modes of neurotransmission in the PDF-positive circadian clock neurons of Drosophila melanogaster. J. Insect Physiol. 57, 1290–1299 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venken, K. J., Simpson, J. H. & Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adrogue, H. E. & Adrogue, H. J. Acid–base physiology. Respir. Care 46, 328–341 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Murayama, T., Takayama, J., Fujiwara, M. & Maruyama, I. N. Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans. Curr. Biol. 23, 1007–1012 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Li, G., Liu, J., Liu, J. & Xu, X. Z. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons. Neuron 91, 146–154 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, X. & Randall, D. J. The effect of water pH on swimming performance in rainbow trout (Salmo gairdneri, Richardson). Fish Physiol. Biochem. 9, 15–21 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • St John, S. J. & Boughter, J. D. Jr Orosensory responsiveness to and preference for hydroxide-containing salts in mice. Chem. Senses 34, 487–498 (2009).

  • Massie, H. R., Williams, T. R. & Colacicco, J. R. Changes in pH with age in Drosophila and the influence of buffers on longevity. Mech. Ageing Dev. 16, 221–231 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanbhag, S. & Tripathi, S. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J. Exp. Biol. 212, 1731–1744 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deshpande, S. A. et al. Acidic food pH increases palatability and consumption and extends Drosophila lifespan. J. Nutr. 145, 2789–2796 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Symbiotic bacteria attenuate Drosophila oviposition repellence to alkaline through acidification. Insect Sci. 28, 403–414 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moon, S. J., Lee, Y., Jiao, Y. & Montell, C. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623–1627 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, T. W. et al. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron 83, 850–865 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, S., Ai, M., Shin, S. A. & Suh, G. S. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. Proc. Natl Acad. Sci. USA 110, E1321–E1329 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. V., Raghuwanshi, R. P., Shen, W. L. & Montell, C. Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat. Neurosci. 16, 1468–1476 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, K. et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464, 597–600 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. H. et al. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl Acad. Sci. USA 107, 8440–8445 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ullrich, F. et al. Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. eLife 8, e49187 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel. Science 364, 395–399 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nonaka, T. & Wong, D. T. W. Saliva diagnostics. Annu. Rev. Anal. Chem. 15, 107–121 (2022).

    Article 

    Google Scholar
     

  • Dibattista, M., Pifferi, S., Boccaccio, A., Menini, A. & Reisert, J. The long tale of the calcium activated Cl(−) channels in olfactory transduction. Channels 11, 399–414 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Increased intracellular Cl(−) concentration improves airway epithelial migration by activating the RhoA/ROCK pathway. Theranostics 10, 8528–8540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J. Biol. Chem. 277, 2000–2005 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. & Montell, C. Mechanism for food texture preference based on grittiness. Curr. Biol. 31, 1850–1861.e6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, B., Chui, V., Mann, K. & Gordon, M. D. Presynaptic gain control drives sweet and bitter taste integration in Drosophila. Curr. Biol. 24, 1978–1984 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potter, C. J., Tasic, B., Russler, E. V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shearin, H. K., Macdonald, I. S., Spector, L. P. & Stowers, R. S. Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196, 951–960 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link