Genetic sequencing of a 1944 Rocky Mountain spotted fever vaccine

  • Harden, V. A. Rocky mountain spotted fever: History of a twentieth-century disease Vol. 16 (Johns Hopkins University Press, 1990).


    Google Scholar
     

  • Maxey, E. E. M., G T; Leary, J W. (1899) Some observations on the so-called spotted fever of Idaho. Med Sentinel, 7: 433–438.

  • Dantas-Torres, F. Rocky mountain spotted fever. Lancet Infect. Dis. 7, 724–732. doi.org/10.1016/S1473-3099(07)70261-X (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, L. B. & Chowning, W. M. Studies in pyroplasmosis hominis. (“Spotted fever” or “tick fever” of the rocky mountains.) (with map, charts, and plates I, Ii). J. Infect. Dis. 1, 31–57. doi.org/10.1093/infdis/1.1.31 (1904).

    Article 

    Google Scholar
     

  • NIAID. History of Rocky mountain labs (RML), <www.niaid.nih.gov/about/rocky-mountain-history> (2022).

  • Ricketts, H. T. the study of “rocky mountain spotted fever” (tick fever?) By means of animal inoculations. A preliminary communication. J. Am. Med. Assoc. XLVII, 33–36. doi.org/10.1001/jama.1906.25210010033001j (1906).

    Article 

    Google Scholar
     

  • Knoop, F. C. Reference module in biomedical sciences (Elsevier, 2014).


    Google Scholar
     

  • Shope, R. E. The epidemiology of the origin and perpetuation of a new disease. Perspect. Biol. Med. 7, 263–278. doi.org/10.1353/pbm.1964.0039 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. Biol. Sci. 273, 2097–2106. doi.org/10.1098/rspb.2006.3541 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, D. H., Hudnall, S. D., Szaniawski, W. K. & Feng, H.-M. Monoclonal antibody-based immunohistochemical diagnosis of rickettsialpox: The macrophage is the principal target. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. 12, 529–533 (1999).

    CAS 

    Google Scholar
     

  • Harrell, G. T. & Aikawa, J. K. Pathogenesis of circulatory failure in rocky mountain spotted fever: Alterations in the blood volume and the thiocyanate space at various stages of the disease. Arch. Intern. Med. 83, 331–347. doi.org/10.1001/archinte.1949.00220320085007 (1949).

    Article 
    CAS 

    Google Scholar
     

  • Lacz, N. L., Schwartz, R. & Kapila, R. Rocky Mountain spotted fever. J. Eur. Acad. Dermatol. Venereol. 20, 411–417 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18, 719–756 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Walker, D. H. rOmpA is a critical protein for the adhesion of Rickettsia rickettsiito host cells. Microb. Pathog. 24, 289–298 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hillman, R. D. Jr., Baktash, Y. M. & Martinez, J. J. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with α2β1 integrin. Cell. Microbiol. 15, 727–741 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, J. J., Seveau, S., Veiga, E., Matsuyama, S. & Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123, 1013–1023 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanc, G. et al. Molecular evolution of rickettsia surface antigens: Evidence of positive selection. Mol. Biol. Evol. 22, 2073–2083 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sears, K. T. et al. Surface proteome analysis and characterization of surface cell antigen (SCA) or autotransporter family of Rickettsia typhi. (2012).

  • Ngwamidiba, M., Blanc, G., Raoult, D. & Fournier, P.-E. Sca 1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol. 6, 1–11 (2006).

    Article 

    Google Scholar
     

  • Pan, L., Zhang, L., Wang, G. & Liu, Q. Rapid, simple, and sensitive detection of the ompB gene of spotted fever group rickettsiae by loop-mediated isothermal amplification. BMC Infect. Dis. 12, 254. doi.org/10.1186/1471-2334-12-254 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peniche-Lara, G., Zavala-Velazquez, J., Dzul-Rosado, K., Walker, D. H. & Zavala-Castro, J. Simple method to differentiate among Rickettsia species. J. Mol. Microbiol. Biotechnol. 23, 203–208. doi.org/10.1159/000348298 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanda, V. et al. New real-time PCRs to differentiate Rickettsia spp. and Rickettsia conorii. Molecules 25(789), 963 (2020).


    Google Scholar
     

  • Barry, J. C. Notable Contributions to Medical Research by Public Health Service Scientists: A Biobibliography to 1940. (U.S. Department of Health, Education, and Welfare, U.S. Public Health Service, 1960).

  • Burgdorfer, W. Ecology of tick vectors of American spotted fever. Bull. World Health Organ 40, 375–381 (1969).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, R. R., Spencer, R. R. & Francis, E. Tularæmia: XI tularæmia infection in ticks of the species dermacentor andersoni stiles in the bitterroot valley Mont. Public Health Rep. 39, 1057–1073. doi.org/10.2307/4577151 (1924).

    Article 

    Google Scholar
     

  • Emmons, R. W. Ecology of Colorado tick fever. Annu. Rev. Microbiol. 42, 49–64. doi.org/10.1146/annurev.mi.42.100188.000405 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, G. E., Cox, H. R., Parker, R. & Dyer, R. A filter-passing infectious agent isolated from ticks. Public Health Rep. 53, 2259–2311 (1938).

    Article 

    Google Scholar
     

  • Yunker, C., Keirans, J., Clifford, C. & Easton, E. Dermacentor ticks (Acari: Ixodoidae: Ixodidae) of the new world: A scanning electron microscope atlas. Proc. Entomol. Soc. Wash. 88, 609–627 (1986).


    Google Scholar
     

  • Anderson, J. F. & Laboratory, U. S. D. o. t. T. U. S. M.-H. S. H. Spotted fever (tick fever) of the rocky mountains: A new disease. (US Government Printing Office, 1903).

  • Bishopp, F. & Trembley, H. L. Distribution and hosts of certain North American ticks. J. Parasitol. 31, 1–54 (1945).

    Article 

    Google Scholar
     

  • James, A. M. et al. Distribution, seasonality, and hosts of the Rocky Mountain wood tick in the United States. J. Med. Entomol. 43, 17–24 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Spencer, R. R. & Parker, R. R. Rocky mountain spotted fever: Vaccination of monkeys and man. Public Health Rep. 1896–1970(40), 2159–2167. doi.org/10.2307/4577679 (1925).

    Article 

    Google Scholar
     

  • Cox, H. R. Rocky mountain spotted fever: Protective value for guinea pigs of vaccine prepared from Rickettsiae cultivated in embryonic chick tissues. Public Health Rep. 1896–1970(54), 1070–1077. doi.org/10.2307/4582917 (1939).

    Article 

    Google Scholar
     

  • Lackman, D. & Parker, R. R. Comparison of the immunogenic and anaphylactogenic properties of rocky mountain spotted fever vaccines prepared from infected yolk sacs and from infected tick tissue. Am. J. Public Health Nations Health 38, 1402–1404. doi.org/10.2105/ajph.38.10.1402 (1948).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, R. R. Rocky mountain spotted fever: Results of ten years’ prophylactic vaccinationi. J. Infect. Dis. 57, 78–93. doi.org/10.1093/infdis/57.1.78 (1935).

    Article 

    Google Scholar
     

  • DuPont, H. L. et al. Rocky Mountain spotted fever: A comparative study of the active immunity induced by inactivated and viable pathogenic Rickettsia rickettsii. J. Infect. Dis. 128, 340–344. doi.org/10.1093/infdis/128.3.340 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenyon, R. H., Acree, W. M., Wright, G. G. & Melchior, F. W. Jr. Preparation of vaccines for rocky mountain spotted fever from rickettsiae propagated in cell culture. J. Infect. Dis. 125, 146–152. doi.org/10.1093/infdis/125.2.146 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenyon, R. H. & Pedersen, C. E. Jr. Preparation of Rocky Mountain spotted fever vaccine suitable for human immunization. J. Clin. Microbiol. 1, 500–503. doi.org/10.1128/jcm.1.6.500-503.1975 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osterloh, A. The neglected challenge: Vaccination against Rickettsiae. PLoS Negl. Trop. Dis. 14, e0008704. doi.org/10.1371/journal.pntd.0008704 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumner, J. W., Sims, K. G., Jones, D. C. & Anderson, B. E. Protection of guinea-pigs from experimental Rocky mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 13, 29–35. doi.org/10.1016/0264-410x(95)80007-z (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, W. et al. Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine 33, 985–992. doi.org/10.1016/j.vaccine.2015.01.017 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine 35, 7204–7212. doi.org/10.1016/j.vaccine.2017.09.068 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • CDC. Rocky mountain spotted fever (RMSF), <www.cdc.gov/rmsf/prevention/index.html> (2022).

  • Alhassan, A. et al. Rickettsia Rickettsii whole-cell antigens offer protection against Rocky mountain spotted fever in the canine host. Infect. Immun. doi.org/10.1128/IAI.00628-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derrick, E. “ Q” fever, a new fever entity: Clinical features, diagnosis and laboratory investigation. Med J Aust 2, 281–299 (1937).

    Article 

    Google Scholar
     

  • Burnet, F. M. & Freeman, M. Experimental studies on the virus of” Q” fever. Med. J. Aust. 2, 299–305 (1937).

    Article 

    Google Scholar
     

  • Shaw, E. I. & Voth, D. E. Coxiella burnetii: A Pathogenic Intracellular Acidophile. Microbiology 165, 1–3. doi.org/10.1099/mic.0.000707 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seshadri, R. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. U. S. A. 100, 5455–5460. doi.org/10.1073/pnas.0931379100 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raoult, D., Marrie, T. & Mege, J. Natural history and pathophysiology of Q fever. Lancet Infect. Dis. 5, 219–226. doi.org/10.1016/S1473-3099(05)70052-9 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eldin, C. et al. From Q fever to Coxiella burnetii infection: A paradigm change. Clin. Microbiol. Rev. 30, 115–190 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ormsbee, R., Peacock, M., Gerloff, R., Tallent, G. & Wike, D. Limits of rickettsial infectivity. Infect. Immun. 19, 239–245. doi.org/10.1128/iai.19.1.239-245.1978 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, G. H., Williams, J. C. & Stephenson, E. H. Animal models in Q fever: Pathological responses of inbred mice to phase I Coxiella burnetii. J. Gen. Microbiol. 133, 691–700. doi.org/10.1099/00221287-133-3-691 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madariaga, M. G., Rezai, K., Trenholme, G. M. & Weinstein, R. A. Q fever: A biological weapon in your backyard. Lancet Infect. Dis. 3, 709–721. doi.org/10.1016/s1473-3099(03)00804-1 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Cox, H. R. Rickettsia diaporica and American Q fever. Am. J. Trop. Med. Hyg. 20, 463–469 (1940).

    Article 

    Google Scholar
     

  • Smadel, J. E., Snyder, M. J. & Robbins, F. C. Vaccination against Q fever12. Am. J. Epidemiol. 47, 71–81. doi.org/10.1093/oxfordjournals.aje.a119187 (1948).

    Article 
    CAS 

    Google Scholar
     

  • Benenson, A. S. & Tigertt, W. D. Studies on Q fever in man. Trans. Assoc. Am. Phys. 69, 98–104 (1956).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. doi.org/10.1038/nmeth.1923 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, G. G., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia using different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279. doi.org/10.1093/sysbio/syv084 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Paris, D. H. et al. Real-time multiplex PCR assay for detection and differentiation of rickettsiae and orientiae. Trans. R. Soc. Trop. Med. Hyg. 102, 186–193. doi.org/10.1016/j.trstmh.2007.11.001 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. doi.org/10.1186/s13059-019-1891-0 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clayton, K. A., Gall, C. A., Mason, K. L., Scoles, G. A. & Brayton, K. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick Dermacentor andersoni. Parasit. Vectors 8, 632. doi.org/10.1186/s13071-015-1245-z (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohacsova, M., Mediannikov, O., Kazimirova, M., Raoult, D. & Sekeyova, Z. Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus due to parasitic wasp Ixodiphagus hookeri. PLoS ONE 11, e0149950. doi.org/10.1371/journal.pone.0149950 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trowbridge, R. E., Dittmar, K. & Whiting, M. F. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J. Invertebr. Pathol. 91, 64–68. doi.org/10.1016/j.jip.2005.08.009 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Burgdorfer, W. et al. Rhipicephalus sanguineus: Vector of a new spotted fever group rickettsia in the United States. Infect. Immun. 12, 205–210. doi.org/10.1128/iai.12.1.205-210.1975 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parola, P. et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 26, 657–702. doi.org/10.1128/cmr.00032-13 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascucci, I. et al. One health approach to rickettsiosis: A five-year study on spotted fever group rickettsiae in ticks collected from humans animals and environment. Microorganisms doi.org/10.3390/microorganisms10010035 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wikswo, M. E. et al. Detection and identification of spotted fever group rickettsiae in Dermacentor species from southern California. J. Med. Entomol. 45, 509–516. doi.org/10.1603/0022-2585(2008)45%5B509:daiosf%5D2.0.co;2 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paddock, C. D. Rickettsia parkeri as a paradigm for multiple causes of tick-borne spotted fever in the western hemisphere. Ann. N. Y. Acad. Sci. 1063, 315–326. doi.org/10.1196/annals.1355.051 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Parola, P., Davoust, B. & Raoult, D. Tick- and flea-borne rickettsial emerging zoonoses. Vet. Res. 36, 469–492. doi.org/10.1051/vetres:2005004 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Carmichael, J. R. & Fuerst, P. A. A rickettsial mixed infection in a Dermacentor variabilis tick from Ohio. Ann. N. Y. Acad. Sci. 1078, 334–337. doi.org/10.1196/annals.1374.064 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Padgett, K. A. et al. The eco-epidemiology of Pacific coast tick fever in California. PLoS Negl. Trop. Dis. 10, e0005020 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gherna, R. L. et al. Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic Wasp Nasonia vitripennis. Int. J. Syst. Evol. Microbiol. 41, 563–565. doi.org/10.1099/00207713-41-4-563 (1991).

    Article 

    Google Scholar
     

  • Balas, M. T., Lee, M. H. & Werren, J. H. Distribution and fitness effects of the son-killer bacterium inNasonia. Evol. Ecol. 10, 593–607 (2005).

    Article 

    Google Scholar
     

  • Nováková, E., Hypsa, V. & Moran, N. A. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143. doi.org/10.1186/1471-2180-9-143 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grindle, N., Tyner, J. J., Clay, K. & Fuqua, C. Identification of Arsenophonus-type bacteria from the dog tick Dermacentor variabilis. J Invertebr. Pathol. 83, 264–266 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Dergousoff, S. & Chilton, N. Detection of a new arsenophonus-type bacterium in Canadian populations of the rocky mountain wood tick Dermacentor Andersoni. Exp. Appl. Acarol. 52, 85–91. doi.org/10.1007/s10493-010-9340-5 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schrick, L. et al. An early American smallpox vaccine based on horsepox. N. Engl. J. Med. 377, 1491–1492. doi.org/10.1056/NEJMc1707600 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Brinkmann, A., Souza, A. R. V., Esparza, J., Nitsche, A. & Damaso, C. R. Re-assembly of nineteenth-century smallpox vaccine genomes reveals the contemporaneous use of horsepox and horsepox-related viruses in the USA. Genome Biol. 21, 286. doi.org/10.1186/s13059-020-02202-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi.org/10.1093/bioinformatics/btu170 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. doi.org/10.1093/bioinformatics/btp352 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koboldt, D. C. et al. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576. doi.org/10.1101/gr.129684.111 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link