The persistence and stabilization of auxiliary genes in the human skin virome | Virology Journal

  • Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425–48.

    Article 
    PubMed 

    Google Scholar
     

  • Chaturongakul S, Ounjai P. Phage-host interplay: examples from tailed phages and gram-negative bacterial pathogens. Front Microbiol. 2014. doi.org/10.3389/fmicb.2014.00442.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016. doi.org/10.3389/fmicb.2016.00173.

    Article 

    Google Scholar
     

  • Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 2019. doi.org/10.15252/embr.201847427.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton TDS, Hill C. Gut bacteriophage: current understanding and challenges. Front Endocrinol (Lausanne). 2019. doi.org/10.3389/fendo.2019.00784.

    Article 
    PubMed 

    Google Scholar
     

  • Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24:392–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derbise A, Chenal-Francisque V, Pouillot F, Fayolle C, Prévost MC, Médigue C, et al. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol. 2007;63:1145–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 2009;3:271–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence. 2012;3:556–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Jiao N, Zhang R. The genomic content and context of auxiliary metabolic genes in roseophages. Environ Microbiol. 2021;23:3743–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kieft K, Zhou Z, Anderson RE, Buchan A, Campbell BJ, Hallam SJ, et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat Commun. 2021;12:3503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, Sanmiguel AJ, et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio. 2015;6:e01578.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;165:854–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Zyl LJ, Abrahams Y, Stander EA, Kirby-McCollough B, Jourdain R, Clavaud C, et al. Novel phages of healthy skin metaviromes from South Africa. Sci Rep. 2018;8:12265.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tisza MJ, Buck CB. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc Natl Acad Sci. 2021;118:e2023202118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol. 2018. doi.org/10.3389/fcimb.2018.00376.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castillo DE, Nanda S, Keri JE. Propionibacterium (Cutibacterium) acnes bacteriophage therapy in acne: current evidence and future perspectives. Dermatol Ther (Heidelb). 2019;9:19–31.

    Article 
    PubMed 

    Google Scholar
     

  • Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun. 2020;6:100.

    Article 

    Google Scholar
     

  • Pirnay JP. Phage therapy in the year 2035. Front Microbiol. 2020. doi.org/10.3389/fmicb.2020.01171.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 2021;36:109471.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham EH, Clarke JL, Fernando SC, Herr JR, Adamowicz MS. The application of the skin virome for human identification. Forensic Sci Int Genet. 2022;57:102662.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014. [www.osti.gov/servlets/purl/1241166].

  • Roux S, Krupovic M, Debroas D, Forterre P, Enault F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 2013;3:130160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. [arxiv.org/abs/1303.3997].

  • Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The CRAN R Team: R: a language and environment for statistical computing. R Found Stat Comput. 2013.

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020;48:D561–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 2017;11:237–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.

    Article 

    Google Scholar
     

  • Simpson EH. Measurement of diversity. Nature. 1949;163:688.

    Article 

    Google Scholar
     

  • Oksanen J. Vegan: community ecology package. 2020. [cran.r-project.org/package=vegan].

  • Odintsova V, Tyakht A, Alexeev D. Guidelines to statistical analysis of microbial composition data inferred from metagenomic sequencing. Curr Issues Mol Biol. 2017;24:17–36.

    Article 
    PubMed 

    Google Scholar
     

  • Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol. 2003;41:4089–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol. 2019;431:2197–212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bienert S, Waterhouse A, De Beer TAP, Tauriello G, Studer G, Bordoli L, et al. The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res. 2017;45:D313–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall AR, Scanlan PD, Morgan AD, Buckling A. Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett. 2011;14:635–42.

    Article 
    PubMed 

    Google Scholar
     

  • Stone E, Campbell K, Grant I, McAuliffe O. Understanding and exploiting phage–host interactions. Viruses. 2019;11:567.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willner D, Furlan M, Haynes M, Schmieder R, Angly FE, Silva J, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE. 2009;4: e7370.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J, Gouilh MA, et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE. 2012;7: e38499.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas AA, Diamond JM, Chehoud C, Chang B, Kotzin JJ, Young JC, et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am J Transplant. 2017;17:1313–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, et al. The blood DNA virome in 8,000 humans. PLOS Pathog. 2017;13:e1006292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirosh O, Conlan S, Deming C, Lee-Lin SQ, Huang X, Barnabas BB, et al. Expanded skin virome in DOCK8-deficient patients. Nat Med. 2018;24:1815–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garretto A, Miller-Ensminger T, Wolfe AJ, Putonti C. Bacteriophages of the lower urinary tract. Nat Rev Urol. 2019;16:422–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghose C, Ly M, Schwanemann LK, Shin JH, Atab K, Barr JJ, et al. The virome of cerebrospinal fluid: viruses where we once thought there were none. Front Microbiol. 2019. doi.org/10.3389/fmicb.2019.02061.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobsen RR, Haahr T, Humaidan P, Jensen JS, Kot WP, Castro-Mejia JL, et al. Characterization of the vaginal DNA virome in health and dysbiosis. Viruses. 2020;12:1143.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19:514–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik SS, Azem-e-Zahra S, Kim KM, Caetano-Anollés G, Nasir A. Do viruses exchange genes across superkingdoms of life? Front Microbiol. 2017;8:2110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss RA. Exchange of genetic sequences between viruses and hosts. Curr Top Microbiol Immunol. 2017;407:1–29.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun. 2021;12:1676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reygaert CW. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chancey ST, Zhou X, Zähner D, Stephens DS. Induction of efflux-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2011;55:3413–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daly MM, Doktor S, Flamm R, Shortridge D. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol. 2004;42:3570–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giovanetti E, Brenciani A, Vecchi M, Manzin A, Varaldo PE. Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes. J Antimicrob Chemother. 2005;55:445–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S, Pozzi G. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front Microbiol. 2014. doi.org/10.3389/fmicb.2014.00687.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chancey ST, Bai X, Kumar N, Drabek EF, Daugherty SC, Colon T, et al. Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other gram-positive bacteria containing mef/mel (msr(D)) elements. PLoS ONE. 2015;10:e0116254.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tandukar M, Oh S, Tezel U, Konstantinidis KT, Pavlostathis SG. Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environ Sci Technol. 2013;47:9730–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Rensing C, Vestergaard G, Arumugam M, Nesme J, Gupta S, et al. Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environ Int. 2022;158:106899.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiliopoulou I, Petinaki E, Papandreou P, Dimitracopoulos G. Erm(C) is the predominant genetic determinant for the expression of resistance to macrolides among methicillin-resistant Staphylococcus aureus clinical isolates in Greece. J Antimicrob Chemother. 2004;53:814–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Read more here: Source link