The potential to produce tropodithietic acid by Phaeobacter inhibens affects the assembly of microbial biofilm communities in natural seawater

  • Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science (1979) 281, 200–206 (1998).

    CAS 

    Google Scholar
     

  • Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, J. et al. Annual dynamics of North Sea bacterioplankton: seasonal variability superimposes short-term variation. FEMS Microbiol. Ecol. 91, 1–11 (2015).

    Article 

    Google Scholar
     

  • Bunse, C. & Pinhassi, J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25, 494–505 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romdhane, S. et al. Unraveling negative biotic interactions determining soil microbial community assembly and functioning. ISME J. 16, 296–306 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobias-Hünefeldt, S. P., Wenley, J., Baltar, F. & Morales, S. E. Ecological drivers switch from bottom–up to top–down during model microbial community successions. ISME J. 15, 1085–1097 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrudan, M. I. et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl Acad. Sci. USA 112, 11054–11059 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamanaka, K. et al. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151, 2899–2905 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science (1979) 361, eaat2456 (2018).


    Google Scholar
     

  • Foster, K. R. & Bell, T. Report competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patin, N. V. et al. Effects of actinomycete secondary metabolites on sediment microbial communities. Appl. Environ. Microbiol. 83, 1–16 (2017).

    Article 

    Google Scholar
     

  • Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang, H., Li, T., Chen, M. & Huang, G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74, 52–60 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonnenschein, E. C. et al. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. ISME J. 11, 569–583 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gram, L. et al. Phaeobacter inhibens from the Roseobacter clade have a natural environmental niche as surface colonizer in Danish harbors. Syst. Appl. Microbiol. 38, 483–493 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Breider, S. et al. Phaeobacter porticola sp. Nov., an antibiotic-producing bacterium isolated from a sea harbour. Int J. Syst. Evol. Microbiol. 67, 2153–2159 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hjelm, M. et al. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 27, 360–371 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Porsby, C. H., Nielsen, K. F. & Gram, L. Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl Environ. Microbiol 74, 7356–7364 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, D. et al. Ability of Pseudoalteromonas tunicata to colonize natural biofilms and its effect on microbial community structure. FEMS Microbiol Ecol. 73, 450–457 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Brinkhoff, T. et al. Antibiotic Production by a Roseobacter Clade-Affiliated Species from the German Wadden Sea and Its Antagonistic Effects on Indigenous Isolates. Appl Environ. Microbiol 70, 2560–2565 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruhn, J. B. et al. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ. Microbiol 71, 7263–7270 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyersmann, P. G. et al. Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens. Sci. Rep. 7, 730 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Alvise, P. W., Phippen, C. B. W., Nielsen, K. F. & Gram, L. Influence of iron on production of the antibacterial compound tropodithietic acid and its noninhibitory analog in Phaeobacter inhibens. Appl Environ. Microbiol 82, 502–509 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1722–1734 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science (1979) 350, 663–6 (2015).

    CAS 

    Google Scholar
     

  • Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol 18, 152–163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, J. Specialized microbial metabolites: functions and origins. J. Antibiotics 66, 361–364 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Butaitė, E., Kramer, J. & Kümmerli, R. Local adaptation, geographical distance and phylogenetic relatedness: assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J. Evol. Biol. 34, 1266–1278 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fajardo, A. & Martínez, J. L. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol 11, 161–167 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pishchany, G. & Kolter, R. On the possible ecological roles of antimicrobials. Mol. Microbiol. 113, 580–587 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 109 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science (1979) 361, 469–474 (2018).

    CAS 

    Google Scholar
     

  • Majzoub, M. E., McElroy, K., Maczka, M., Thomas, T. & Egan, S. Causes and consequences of a variant strain of Phaeobacter inhibens with reduced competition. Front Microbiol. 9, 2601 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mark, B. M. & Zhu, Y. Gliding motility and por secretion system genes are widespread among members of the phylum bacteroidetes. J. Bacteriol. 195, 270–278 (2013).

    Article 

    Google Scholar
     

  • Berger, M., Neumann, A., Schulz, S., Simon, M. & Brinkhoff, T. Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J. Bacteriol. 193, 6576–6585 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porsby, C. H., Webber, M. A., Nielsen, K. F., Piddock, L. J. V. & Gram, L. Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select. Antimicrob. Agents Chemother. 55, 1332–1337 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriksen, N. N. S. E. et al. The ability of Phaeobacter inhibens to produce tropodithietic acid influences the community dynamics of a microalgal microbiome. ISME Commun. 2, 109 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Dittmann, K. K. et al. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol 86, 1–15 (2020).

    Article 

    Google Scholar
     

  • Gram, L. et al. Phaeobacter inhibens from the Roseobacter clade has an environmental niche as a surface colonizer in harbors. Syst. Appl. Microbiol. 38, 483–493 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ. Microbiol 66, 692–697 (2000).

    Article 

    Google Scholar
     

  • Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science (1979) 336, 608–611 (2012).

    CAS 

    Google Scholar
     

  • Dittmann, K. K., Sonnenschein, E. C., Egan, S., Gram, L. & Bentzon-Tilia, M. Impact of Phaeobacter inhibens on marine eukaryote-associated microbial communities. Environ. Microbiol Rep. 11, 401–413 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng, H., Tran-Gyamfi, M. B., Lane, T. W., Sale, K. L. & Yu, E. T. Changes in the structure of the microbial community associated with Nannochloropsis salina following treatments with antibiotics and bioactive compounds. Front Microbiol 7, 1155 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, M. Z., Wang, R., Gitai, Z. & Seyedsayamdost, M. R. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. Proc. Natl Acad. Sci. USA 113, 1630–1635 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Alvise, P. W. et al. Phaeobacter gallaeciensis reduces vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS One 7, e43996 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrington, C. et al. Characterisation of non-autoinducing tropodithietic acid (TDA) production from marine sponge Pseudovibrio species. Mar. Drugs 12, 5960–5978 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tesdorpf, J. E., Geers, A. U., Strube, M. L., Gram, L. & Bentzon-Tilia, M. Roseobacter group probiotics exhibit differential killing of fish pathogenic Tenacibaculum Species. Appl. Environ. Microbiol. 88, e0241821 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol 16, 567–576 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martens, T. et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J. Syst. Evol. Microbiol. 56, 1293–1304 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, R., Gallant, É. & Seyedsayamdost, M. R. Investigation of the genetics and biochemistry of roseobacticide production in the Roseobacter clade bacterium Phaeobacter inhibens. mBio 7, e02118 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernbom, N. et al. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films. J. Appl. Microbiol. 106, 1268–1279 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

    Article 

    Google Scholar
     

  • Asséré, A., Oulahal, N. & Carpentier, B. Comparative evaluation of methods for counting surviving biofilm cells adhering to a polyvinyl chloride surface exposed to chlorine or drying. J. Appl. Microbiol. 104, 1692–1702 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kovach, M. E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. D., Isbrandt, T., Lindqvist, L. L., Larsen, T. O. & Gram, L. Holomycin, an Antibiotic Secondary Metabolite, Is Required for Biofilm Formation by the Native Producer Photobacterium galatheae S2753. Appl Environ. Microbiol. 87, e00169–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernbom, N., Ng, Y. Y., Olsen, S. M. & Gram, L. Pseudoalteromonas spp. Serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint. Appl Environ. Microbiol. 79, 6885–6893 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmström, C., James, S., Neilan, B. A., White, D. C. & Kjelleberg, S. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J. Syst. Bacteriol. 48, 1205–1212 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Skov, M. N., Pedersen, K. & Larsen, J. L. Comparison of pulsed-field gel electrophoresis, ribotyping, and plasmid profiling for typing of Vibrio anguillarum serovar O1. Appl Environ. Microbiol. 61, 1540–1545 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bech, P. K., Lysdal, K. L., Gram, L., Bentzon-Tilia, M. & Strube, M. L. Marine sediments hold an untapped potential for novel taxonomic and bioactive bacterial diversity. mSystems 5, e00782–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ. Microbiol. 73, 5261–5267 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strube, M. L. RibDif: can individual species be differentiated by 16S sequencing? Bioinf. Adv. 1, vbab020 (2021).


    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A. L. & Depner, M. NetCoMi: network construction and comparison for microbiome data in R. Brief. Bioinf. 22, bbaa290 (2021).

    Article 

    Google Scholar
     

  • Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Y. et al. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front. Microbiol. 7, 60 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8, 187 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science (1979) 336, 1255–1262 (2012).

    CAS 

    Google Scholar
     

  • Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 5, 219 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriksen, N. N. S. E. et al. Role is in the eye of the beholder—the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev. 46, fuac007 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link