Two florigens and a florigen-like protein form a triple regulatory module at the shoot apical meristem to promote reproductive transitions in rice

  • Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. & Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development 135, 767–774 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S. & Shimamoto, K. Hd3a protein is a mobile flowering signal in rice. Science 316, 1033–1036 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komiya, R., Yokoi, S. & Shimamoto, K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443–3450 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wickland, D. & Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER1 gene family: functional evolution and molecular mechanisms. Mol. Plant 8, 983–997 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taoka, K. et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332–335 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whipple, C. J. Grass inflorescence architecture and evolution: the origin of novel signaling centers. N. Phytol. 216, 367–372 (2017).

    Article 

    Google Scholar
     

  • Gómez-Ariza, J. et al. A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nat. Plants 5, 358–362 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Izawa, T. et al. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16, 2006–2020 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brambilla, V. et al. Antagonistic transcription factor complexes modulate the floral transition in rice. Plant Cell 29, 2801–2816 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goretti, D. et al. Transcriptional and post-transcriptional mechanisms limit Heading Date 1 (Hd1) function to adapt rice to high latitudes. PLoS Genet. 13, e1006530 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuda, K., Ito, Y., Sato, Y. & Kurata, N. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell 23, 4368–4381 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asano, T. et al. Rpp16 and Rpp17, from a common origin, have different protein characteristics but both genes are predominantly expressed in rice phloem tissues. Plant Cell Physiol. 43, 668–674 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Precise and heritable gene targeting in rice using a sequential transformation strategy. Cell Rep. Methods 3, 100389 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Ariza, J. et al. Loss of floral repressor function adapts rice to higher latitudes in Europe. J. Exp. Bot. 66, 2027–2039 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rigola, D. et al. High-throughput detection of induced mutations and natural variation using KeyPointTM technology. PLoS ONE 4, e4761 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, W. W. H. & Weigel, D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26, 552–564 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pires, D. E. V., Ascher, D. B. & Blundell, T. L. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 42, W314-9 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Andrés, F. et al. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc. Natl Acad. Sci. USA 111, E2760–E2769 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, W. et al. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. N. Phytol. 233, 1682–1700 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kobayashi, K. et al. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24, 1848–1859 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad, K., Parameswaran, S. & Vijayraghavan, U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J. 43, 915–928 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc. Natl Acad. Sci. USA 112, 15504–15509 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Bract suppression regulated by the miR156/529–SPLs–NL1–PLA1 module is required for the transition from vegetative to reproductive branching in rice. Mol. Plant 14, 1168–1184 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerise, M. et al. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. N. Phytol. 229, 429–443 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, A., Nijhawan, A., Yadav, M. & Khurana, J. P. OsbZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice. J. Exp. Bot. 72, 7826–7845 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miki, D., Zhang, W., Zeng, W., Feng, Z. & Zhu, J. K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 9, 1967 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miki, D. et al. CRISPR/Cas9-based genome editing toolbox for Arabidopsis thaliana. Methods Mol. Biol. 2200, 121–146 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • AL-Tam, F. et al. P-TRAP: a panicle trait phenotyping tool. BMC Plant Biol. 13, 122 (2013).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, J. et al. Targeted mutagenesis in rice using CRISPR–Cas system. Cell Res. 23, 1233–1236 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahoo, K. K., Tripathi, A. K., Pareek, A., Sopory, S. K. & Singla-Pareek, S. L. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7, 49 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toriba, T. et al. Suppression of leaf blade development by BLADE-ON-PETIOLE orthologs is a common strategy for underground rhizome growth. Curr. Biol. 30, 509–516.e3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betti, C. et al. Sequence-specific protein aggregation generates defined protein knockdowns in plants. Plant Physiol. 171, 773–787 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbruscato, P. et al. OsWRKY22, a monocot wrky gene, plays a role in the resistance response to blast. Mol. Plant Pathol. 13, 828–841 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link