Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications | Military Medical Research

  • Naik RR, Singamaneni S. Introduction: bioinspired and biomimetic materials. Chem Rev. 2017;117(20):12581–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev. 2017;117(20):12764–850.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullah S, Chen X. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Appl Mater Today. 2020;20(100656):100656.

    Article 

    Google Scholar
     

  • Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017;21(1):9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insuasti-Cruz E, Suárez-Jaramillo V, Mena Urresta KA, Pila-Varela KO, Fiallos-Ayala X, Dahoumane SA, et al. Natural biomaterials from biodiversity for healthcare applications. Adv Healthc Mater. 2022;11(1):e2101389.

    Article 
    PubMed 

    Google Scholar
     

  • Garlotta D. A literature review of poly (lactic acid). J Polym Environ. 2001;9(2):63–84.

    Article 
    CAS 

    Google Scholar
     

  • Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andhariya JV, Burgess DJ. Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv. 2016;13(4):593–608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, et al. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv. 2021;28(1):1342–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamprecht A, Ubrich N, Hombreiro Pérez M, Lehr C, Hoffman M, Maincent P. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm. 2000;196(2):177–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolland BJRF, Kanczler JM, Ginty PJ, Howdle SM, Shakesheff KM, Dunlop DG, et al. The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone graft extender in impaction bone grafting. Biomaterials. 2008;29(22):3221–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milan J-L, Planell JA, Lacroix D. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold. Biomaterials. 2009;30(25):4219–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavot V, Berthet M, Rességuier J, Legaz S, Handké N, Gilbert SC, et al. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond). 2014;9(17):2703–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee W, Park J. The design of a heterocellular 3D architecture and its application to monitoring the behavior of cancer cells in response to the spatial distribution of endothelial cells. Adv Mater. 2012;24(39):5339–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen GQ, Jiang XR. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol. 2018;53:20–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev. 2009;38(8):2434–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei DX, Dao JW, Chen GQ. A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater. 2018;30(31):1802273.

    Article 

    Google Scholar
     

  • Wei DX, Dao JW, Liu HW, Chen GQ. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. Artif Cells Nanomed Biotechnol. 2018;46(sup2):473–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao XH, Peng XL, Gong HL, Wei DX. Osteogenic differentiation system based on biopolymer nanoparticles for stem cells in simulated microgravity. Biomed Mater. 2021;16(4):044102.

    Article 
    CAS 

    Google Scholar
     

  • Chen R, Yu J, Gong HL, Jiang Y, Xue M, Xu N, et al. An easy long-acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J Tissue Eng Regen Med. 2020;14(7):964–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu J, Wang M, Xiao X, Zhang B, Xie Q, Xu X, et al. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale. 2020;12(19):10799–808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng X-L, Cheng J-S-Y, Gong H-L, Yuan M-D, Zhao X-H, Li Z, et al. Advances in the design and development of SARS-CoV-2 vaccines. Mil Med Res. 2021;8(1):67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang ZH, Zhang J, Zhang Q, Gao Y, Yan J, Zhao XY, et al. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Genet Mol Res. 2016;15(3):1–8.


    Google Scholar
     

  • Wang Z-Y, Zhang X-W, Ding Y-W, Ren Z-W, Wei D-X. Natural biopolyester microspheres with diverse structures and surface topologies as micro-devices for biomedical applications. Smart Mater Med. 2023;4:15–36.

    Article 

    Google Scholar
     

  • Ding Y-W, Zhang X-W, Mi C-H, Qi X-Y, Zhou J, Wei D-X. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. Smart Mater Med. 2023;4:59–68.

    Article 

    Google Scholar
     

  • Sunguroğlu C, Sezgin DE, Aytar Çelik P, Çabuk A. Higher titer hyaluronic acid production in recombinant Lactococcus lactis. Prep Biochem Biotechnol. 2018;48(8):734–42.

    Article 
    PubMed 

    Google Scholar
     

  • Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol. 2014;185:28–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech. 2016;6(1):67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding Y-W, Wang Z-Y, Ren Z-W, Zhang X-W, Wei D-X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater Sci. 2022;10(13):3393–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Sun L, Bian F, Wang Y, Zhao Y. Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing. ACS Nano. 2022;16(2):2640–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma W, Zhang X, Liu Y, Fan L, Gan J, Liu W, et al. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv Sci (Weinh). 2022;9(13):e2103317.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou J, Zhang B, Liu X, Shi L, Zhu J, Wei D, et al. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym. 2016;143:301–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan–a review. J Control Release. 2006;114(1):1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernando IPS, Kim D, Nah J-W, Jeon Y-J. Advances in functionalizing fucoidans and alginates (bio)polymers by structural modifications: a review. Chem Eng J. 2019;355:33–48.

    Article 
    CAS 

    Google Scholar
     

  • Fan L, Hu L, Xie J, He Z, Zheng Y, Wei D, et al. Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors. Biomater Sci. 2021;9(17):5884–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu S, Du X, Zhu M, Tian Z, Wei D, Zhu Y. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomed Mater. 2019;14(6):065011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18(8):583–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater. 2012;24(31):4271–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song X, Wang X, Zhang J, Shen S, Yin W, Ye G, et al. A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair. Biomaterials. 2021;273(120811):120811.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borges AL, Castro B, Govindarajan S, Solvik T, Escalante V, Bondy-Denomy J. Bacterial alginate regulators and phage homologs repress CRISPR-Cas immunity. Nat Microbiol. 2020;5(5):679–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Rensburg P, Van Zyl WH, Pretorius IS. Engineering yeast for efficient cellulose degradation. Yeast. 1998;14(1):67–76.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou S, Nyholm L, Strømme M, Wang Z. Cladophora cellulose: Unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Acc Chem Res. 2019;52(8):2232–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44(22):3358–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol. 2018;50:94–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials. 2010;31(34):8889–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Hou H, Wang S, Lin R, Wang L, Yu L, et al. From waste of marine culture to natural patch in cardiac tissue engineering. Bioact Mater. 2021;6(7):2000–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, et al. Biofabrication with chitosan. Biomacromol. 2005;6(6):2881–94.

    Article 
    CAS 

    Google Scholar
     

  • Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A. The good, the bad and the ugly of chitosans. Mar Drugs. 2016;14(5):99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos JCC, Moreno PMD, Mansur AAP, Leiro V, Mansur HS, Pêgo AP. Functionalized chitosan derivatives as nonviral vectors: physicochemical properties of acylated N, N, N-trimethyl chitosan/oligonucleotide nanopolyplexes. Soft Matter. 2015;11(41):8113–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang M, Khor E, Lim L-Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21(2):344–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saranya N, Moorthi A, Saravanan S, Devi MP, Selvamurugan N. Chitosan and its derivatives for gene delivery. Int J Biol Macromol. 2011;48(2):234–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu T, Yang H, Yang D, Yu Z-Z. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9(25):21094–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullah S, Zainol I, Chowdhury SR, Fauzi MB. Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: effect on morphology, mechanical strength, biostability and cytocompatibility. Int J Biol Macromol. 2018;111:158–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li P, Liu S, Yang X, Du S, Tang W, Cao W, et al. Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing. Chem Eng J. 2021;403(126387):126387.

    Article 
    CAS 

    Google Scholar
     

  • Buehler MJ. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci U S A. 2006;103(33):12285–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):e1801651.

    Article 
    PubMed 

    Google Scholar
     

  • Wu H, Zhang R, Hu B, He Y, Zhang Y, Cai L, et al. A porous hydrogel scaffold mimicking the extracellular matrix with swim bladder derived collagen for renal tissue regeneration. Chin Chem Lett. 2021;32(12):3940–7.

    Article 
    CAS 

    Google Scholar
     

  • Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev. 2018. doi.org/10.1039/c8cs00187a.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science. 2001;291(5513):2603–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei S, Ma J-X, Xu L, Gu X-S, Ma X-L. Biodegradable materials for bone defect repair. Mil Med Res. 2020;7(1):54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Pu Y, Yang R, Liu X, Wang P, Wang X, et al. Boron-assisted dual-crosslinked poly (γ-glutamic acid) hydrogels with high toughness for cartilage regeneration. Int J Biol Macromol. 2020;153:158–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Liu S, Yang R, Wang P, Zhang W, Tan X, et al. Gradient chondroitin sulfate/poly (γ-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym. 2021;270(118330):118330.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y. Microbial production of poly-γ-glutamic acid. World J Microbiol Biotechnol. 2017;33(9):1–8.

    Article 
    CAS 

    Google Scholar
     

  • Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, et al. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metab Eng. 2019;56:39–49.

    Article 
    PubMed 

    Google Scholar
     

  • Lee J-K, Luchian T, Park Y. New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget. 2018;9(21):15616–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montalvo GEB, Vandenberghe LPDS, Soccol VT, Carvalho JCD, Soccol CR. The antihypertensive, antimicrobial and anticancer peptides from Arthrospira with therapeutic potential: a mini review. Curr Mol Med. 2020;20(8):593–606.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Q-Y, Yan Z-B, Meng Y-M, Hong X-Y, Shao G, Ma J-J, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong T, Fu J, Shi L, Chen X, Zong X. Antimicrobial peptides in gut health: a review. Front Nutr. 2021;8:751010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei D, Zhang X. Biosynthesis, bioactivity, biotoxicity and applications of antimicrobial peptides for human health. Biosaf Health. 2022;4(2):118–34.

    Article 

    Google Scholar
     

  • Tan D, Xue Y-S, Aibaidula G, Chen G-Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol. 2011;102(17):8130–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Matsumoto KI, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, et al. Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol. 2012;93(5):1917–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng F, Luozhong S, Guo Z, Yu H, Stephanopoulos G. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol J. 2017;12(10):1700191.

    Article 

    Google Scholar
     

  • Matsumoto KI, Tobitani K, Aoki S, Song Y, Ooi T, Taguchi S. Improved production of poly(lactic acid)-like polyester based on metabolite analysis to address the rate-limiting step. AMB Express. 2014;4(1):83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering bacterial cellulose by synthetic biology. Int J Mol Sci. 2020;21(23):9185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai SK, Gallivan JP. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc. 2004;126(41):13247–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suess B, Fink B, Berens C, Stentz R, Hillen W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 2004;32(4):1610–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol. 2005;23(3):337–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science. 1998;282(5387):296–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao W, Lv L, Chen GQ. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Fact. 2017;16(1):48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv L, Ren YL, Chen JC, Wu Q, Chen GQ. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab Eng. 2015;29:160–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol. 2005;71(7):3747–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Xia L, Day BA, Harris TI, Oliveira P, Knittel C, et al. CRISPR/Cas9 initiated transgenic silkworms as a natural spinner of spider silk. Biomacromol. 2019;20(6):2252–64.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci. 2014;281(1780):20133368.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martemyanov KA, Shirokov VA, Kurnasov OV, Gudkov AT, Spirin AS. Cell-free production of biologically active polypeptides: application to the synthesis of antibacterial peptide cecropin. Protein Expr Purif. 2001;21(3):456–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, et al. Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol. 2016;5(11):1308–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng F, Gong Q, Yu H, Stephanopoulos G. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J. 2016;11(4):574–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Zhang HM, Chen X, Li T, Wu Q, Ouyang Q, et al. Novel T7-like expression systems used for Halomonas. Metab Eng. 2017;39:128–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Lin H, Zhao P, Xing L, Li J, Wang Z, et al. A regulatory perspective on recombinant collagen-based medical devices. Bioact Mater. 2022;12:198–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei XX, Shi ZY, Yuan MQ, Chen GQ. Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl Microbiol Biotechnol. 2009;82(4):703–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng. 2010;12(4):352–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu X-Z, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ. Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng. 2014;23:78–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan D, Wu Q, Chen JC, Chen GQ. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng. 2014;26:34–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv. 2015;33(7):1433–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Wu H, Jiang X, Chen GQ. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng. 2014;25:183–93.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Z, Qin Q, Zheng Y, Li F, Zhao Y, Chen GQ. Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties. Metab Eng. 2021;67:53–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castillo T, Heinzle E, Peifer S, Schneider K, Peña MCF. Oxygen supply strongly influences metabolic fluxes, the production of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinelandii. Process Biochem. 2013;48(7):995–1003.

    Article 
    CAS 

    Google Scholar
     

  • Guo J, Luo YE, Fan D, Yang B, Gao P, Ma X, et al. Medium optimization based on the metabolic-flux spectrum of recombinant Escherichia coli for high expression of human-like collagen II. Biotechnol Appl Biochem. 2010;57(2):55–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia S-R. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol. 2013;97(14):6189–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Cheng F, Zheng B, Yu H. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering. Synth Syst Biotechnol. 2020;5(4):316–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC Bioinform. 2007;8(1):263.

    Article 

    Google Scholar
     

  • Fjell CD, Jenssen H, Hilpert K, Cheung WA, Panté N, Hancock REW, et al. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem. 2009;52(7):2006–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Li G, Dong J, Xing XH, Dai J, Zhang C. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab Eng. 2018;47:294–302.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jervis AJ, Carbonell P, Taylor S, Sung R, Dunstan MS, Robinson CJ, et al. SelProm: a queryable and predictive expression vector selection tool for Escherichia coli. ACS Synth Biol. 2019;8(7):1478–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods. 2019;16(8):687–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadadi N, Hatzimanikatis V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr Opin Chem Biol. 2015;28:99–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão De Morais D, Paes HC, et al. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol. 2022;132(2):822–40.

    Article 
    PubMed 

    Google Scholar
     

  • Bejagam KK, Lalonde J, Iverson CN, Marrone BL, Pilania G. Machine learning for melting temperature predictions and design in polyhydroxyalkanoate-based biopolymers. J Phys Chem B. 2022;126(4):934–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilania G, Iverson CN, Lookman T, Marrone BL. Machine-learning-based predictive modeling of glass transition temperatures: a case of polyhydroxyalkanoate homopolymers and copolymers. J Chem Inf Model. 2019;59(12):5013–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu RZ, Cao JS, Luo JY, Feng Q, Ni BJ, Fang F. Integrating mechanistic and deep learning models for accurately predicting the enrichment of polyhydroxyalkanoates accumulating bacteria in mixed microbial cultures. Bioresour Technol. 2022;344(Pt B):126276.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pazhamannil RV, Govindan P, Sooraj P. Prediction of the tensile strength of polylactic acid fused deposition models using artificial neural network technique. Mater Today. 2021;46:9187–93.

    CAS 

    Google Scholar
     

  • Zhang Y, Xu JL, Yuan ZH. Modeling and prediction in the enzymatic hydrolysis of cellulose using artificial neural networks. In: 2009 fifth international conference on natural computation: IEEE, 2009; pp. 158–62

  • Rodríguez-Dorado R, Landín M, Altai A, Russo P, Aquino RP, Del Gaudio P. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools. Int J Pharm. 2018;538(1–2):97–104.

    Article 
    PubMed 

    Google Scholar
     

  • Damiati SA, Rossi D, Joensson HN, Damiati S. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics. Sci Rep. 2020;10(1):19517.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Silva E, Silva N, de Souza FF, dos Santos Freitas MM, Pino Hernández EJG, Dantas VV, Enê Chaves Oliveira M, et al. Artificial intelligence application for classification and selection of fish gelatin packaging film produced with incorporation of palm oil and plant essential oils. Food Packag Shelf Life. 2021;27(100611):100611.

    Article 

    Google Scholar
     

  • Dong R, Zhao X, Guo B, Ma PX. Biocompatible elastic conductive films significantly enhanced myogenic differentiation of myoblast for skeletal muscle regeneration. Biomacromolecules. 2017;18(9):2808–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabbro A, Scaini D, León V, Vázquez E, Cellot G, Privitera G, et al. Graphene-based interfaces do not alter target nerve cells. ACS Nano. 2016;10(1):615–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan AJ, Kearney CJ, Shen N, Khan U, Kelly AG, Probst C, et al. Electroconductive biohybrid collagen/pristine graphene composite biomaterials with enhanced biological activity. Adv Mater. 2018;30(15):e1706442.

    Article 
    PubMed 

    Google Scholar
     

  • He Y, Ye G, Song C, Li C, Xiong W, Yu L, et al. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics. 2018;8(18):5159–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song X, Mei J, Ye G, Wang L, Ananth A, Yu L, et al. In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Appl Mater Today. 2019;15:87–99.

    Article 

    Google Scholar
     

  • Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Liu Y, Ye G, He Y, Li B, Guan Y, et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nat Biomed Eng. 2021;5(10):1157–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong W, Wang X, Guan H, Kong F, Xiao Z, Jing Y, et al. A vascularized conductive elastic patch for the repair of infarcted myocardium through functional vascular anastomoses and electrical integration. Adv Funct Mater. 2022;32(19):2111273.

    Article 
    CAS 

    Google Scholar
     

  • Kaufmann R, Theophile U. Autonomously promoted extension effect in Purkinje fibers, papillary muscles and trabeculae carneae of rhesus monkeys. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;297(3):174–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukada E, Yasuda I. On the piezoelectric effect of bone. J Phys Soc Jpn. 1957;12(10):1158–62.

    Article 

    Google Scholar
     

  • Kalinin SV, Rodriguez BJ, Shin J, Jesse S, Grichko V, Thundat T, et al. Bioelectromechanical imaging by scanning probe microscopy: Galvani’s experiment at the nanoscale. Ultramicroscopy. 2006;106(4–5):334–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamos MH, Lavine LS. Piezoelectricity as a fundamental property of biological tissues. Nature. 1967;213(5073):267–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson JC, Eriksson C. Piezoelectric properties of dry and wet bone. Nature. 1970;227(5257):491–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yucel T, Cebe P, Kaplan DL. Structural origins of silk piezoelectricity. Adv Funct Mater. 2011;21(4):779–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denning D, Kilpatrick JI, Fukada E, Zhang N, Habelitz S, Fertala A, et al. Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomater Sci Eng. 2017;3(6):929–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerin S, Stapleton A, Chovan D, Mouras R, Gleeson M, Mckeown C, et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat Mater. 2018;17(2):180–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee BY, Zhang J, Zueger C, Chung W-J, Yoo SY, Wang E, et al. Virus-based piezoelectric energy generation. Nat Nanotechnol. 2012;7(6):351–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park IW, Kim KW, Hong Y, Yoon HJ, Lee Y, Gwak D. Recent developments and prospects of M13-bacteriophage based piezoelectric energy harvesting devices. Nanomaterials. 2020;10(1):93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Li J, Long Y, Zhang Z, Wang L, Sui J, et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science. 2021;373(6552):337–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shan G, Li X, Huang W. AI-enabled wearable and flexible electronics for assessing full personal exposures. Innovation (N Y). 2020;1(2):100031.


    Google Scholar
     

  • Karan SK, Maiti S, Kwon O, Paria S, Maitra A, Si SK, et al. Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy. 2018;49:655–66.

    Article 
    CAS 

    Google Scholar
     

  • Karan SK, Maiti S, Paria S, Maitra A, Si SK, Kim JK, et al. A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater Today Energy. 2018;9:114–25.

    Article 

    Google Scholar
     

  • Wang X, Wang ZL, Yang Y. Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy. 2016;26:164–71.

    Article 
    CAS 

    Google Scholar
     

  • Sakaguchi M, Kashiwabara H. A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoions which are produced by mechanical fracture of solid polymer. Colloid Polym Sci. 1992;270(7):621–6.

    Article 
    CAS 

    Google Scholar
     

  • Kim D, Jeon S-B, Kim JY, Seol M-L, Kim SO, Choi Y-K. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy. 2015;12:331–8.

    Article 
    CAS 

    Google Scholar
     

  • Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, et al. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces. 2016;8(24):15607–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, et al. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv Mater. 2018;30(12):1706738.

    Article 

    Google Scholar
     

  • Huang T, Zhang Y, He P, Wang G, Xia X, Ding G, et al. “self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly(vinylidene fluoride) and recombinant spider silk. Adv Mater. 2020;32(10):e1907336.

    Article 
    PubMed 

    Google Scholar
     

  • Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim BS, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol. 2000;18(1):2–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hubbell JA. Biomaterials in tissue engineering. Biotechnology (N Y). 1995;13(6):565–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6(12):2583.

    Article 
    CAS 

    Google Scholar
     

  • Lin F, Lu X, Wang Z, Lu Q, Lin G, Huang B, et al. In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose. 2019;26(3):1825–39.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Wang X, Yang F, Wang L, Wu D. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv Mater. 2018;30(18):e1707071.

    Article 
    PubMed 

    Google Scholar
     

  • Tjong SC. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater. 2007;9(8):639–52.

    Article 
    CAS 

    Google Scholar
     

  • Itoh H, Aso Y, Furuse M, Noishiki Y, Miyata T. A honeycomb collagen carrier for cell culture as a tissue engineering scaffold. Artif Organs. 2001;25(3):213–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakudo N, Shimotsuma A, Miyake S, Kushida S, Kusumoto K. Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold. J Biomed Mater Res A. 2008;84(1):191–7.

    Article 
    PubMed 

    Google Scholar
     

  • Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2006;18(24):3203–24.

    Article 
    CAS 

    Google Scholar
     

  • Shin K, Acri T, Geary S, Salem AK. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng Part A. 2017;23(19–20):1169–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Y, Lode A, Wu C, Chang J, Gelinsky M. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6541–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584(7822):535–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mckinnon DD, Domaille DW, Cha JN, Anseth KS. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater. 2014;26(6):865–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang S, Ma H, Tu H-C, Wang H-R, Lin P-C, Anseth KS. Adaptable fast relaxing boronate-based hydrogels for probing cell-matrix interactions. Adv Sci (Weinh). 2018;5(9):1800638.

    Article 
    PubMed 

    Google Scholar
     

  • Brown TE, Carberry BJ, Worrell BT, Dudaryeva OY, Mcbride MK, Bowman CN, et al. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials. 2018;178:496–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marozas IA, Anseth KS, Cooper-White JJ. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials. 2019;223:119430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials. 2018;154:213–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loebel C, Mauck RL, Burdick JA. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat Mater. 2019;18(8):883–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15(3):326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dooling LJ, Buck ME, Zhang W-B, Tirrell DA. Programming molecular association and viscoelastic behavior in protein networks. Adv Mater. 2016;28(23):4651–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Zhang G, Shi M, Suo Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science. 2021;374(6564):212–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin S, Liu X, Liu J, Yuk H, Loh H-C, Parada GA, et al. Anti-fatigue-fracture hydrogels. Sci Adv. 2019;5(1):eaau8528.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Xiang C, Yao X, Le Floch P, Mendez J, Suo Z. Stretchable materials of high toughness and low hysteresis. Proc Natl Acad Sci U S A. 2019;116(13):5967–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruzic JJ. Materials science. Predicting fatigue failures. Science. 2009;325(5937):156–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bi B, Liu H, Kang W, Zhuo R, Jiang X. An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications. Colloids Surf B Biointerfaces. 2019;175:614–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren K, Li B, Xu Q, Xiao C, He C, Li G, et al. Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polym Chem. 2017;8(45):7017–24.

    Article 
    CAS 

    Google Scholar
     

  • Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules. 2000;33(11):4291–4.

    Article 
    CAS 

    Google Scholar
     

  • Glassman MJ, Chan J, Olsen BD. Reinforcement of shear thinning protein hydrogels by responsive block copolymer self-assembly. Adv Funct Mater. 2013;23(9):1182–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials. 2000;21(23):2405–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng Y, Hussain I, Kang M, Li K, Yao F, Liu S, et al. Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties. Chem Eng J. 2018;353:900–10.

    Article 
    CAS 

    Google Scholar
     

  • Thornton PD, Mart RJ, Ulijn RV. Enzyme-responsive polymer hydrogel particles for controlled release. Adv Mater. 2007;19(9):1252–6.

    Article 

    Google Scholar
     

  • Fan H, Guo Z. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci. 2020;8(6):1502–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hancock MJ, Piraino F, Camci-Unal G, Rasponi M, Khademhosseini A. Anisotropic material synthesis by capillary flow in a fluid stripe. Biomaterials. 2011;32(27):6493–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hancock MJ, Yanagawa F, Jang Y-H, He J, Kachouie NN, Kaji H, et al. Designer hydrophilic regions regulate droplet shape for controlled surface patterning and 3D microgel synthesis. Small. 2012;8(3):393–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kryuchkov M, Bilousov O, Lehmann J, Fiebig M, Katanaev VL. Reverse and forward engineering of Drosophila corneal nanocoatings. Nature. 2020;585(7825):383–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Pan Z, Zhao ZY, Wang MH, Dong L, Gao HL, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing. Adv Mater. 2022;34(20):e2200115.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Yu Y, Yang C, Shao C, Shi K, Shang L, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater. 2021;31(40):2105190.

    Article 
    CAS 

    Google Scholar
     

  • Revzin A, Russell RJ, Yadavalli VK, Koh WG, Deister C, Hile DD, et al. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir. 2001;17(18):5440–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao W, Xiao Y, Gu Z, Li L, Yu X. Preparation and properties of plasma sprayed strontium-doped calcium polyphosphate coating for bone tissue engineering. Ceram Int. 2014;40(1):805–9.

    Article 
    CAS 

    Google Scholar
     

  • Lu T, Qiao Y, Liu X. Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus. 2012;2(3):325–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castilho M, van Mil A, Maher M, Metz CHG, Hochleitner G, Groll J, et al. Melt electrowriting allows tailored microstructural and mechanical design of scaffolds to advance functional human myocardial tissue formation. Adv Funct Mater. 2018;28(40):1803151.

    Article 

    Google Scholar
     

  • Castilho M, Feyen D, Flandes-Iparraguirre M, Hochleitner G, Groll J, Doevendans PF, et al. Melt electrospinning writing of poly-hydroxymethylglycolide-co-ε-caprolactone-based scaffolds for cardiac tissue engineering. Adv Healthc Mater. 2017;6(18):1700311.

    Article 

    Google Scholar
     

  • Hou H, Hu K, Lin H, Forth J, Zhang W, Russell TP, et al. Reversible surface patterning by dynamic crosslink gradients: controlling buckling in 2D. Adv Mater. 2018;30(36):e1803463.

    Article 

    Google Scholar
     

  • Hou H, Yin J, Jiang X. Smart patterned surface with dynamic wrinkles. Acc Chem Res. 2019;52(4):1025–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baudequin T, Tabrizian M. Multilineage constructs for scaffold-based tissue engineering: a review of tissue-specific challenges. Adv Healthc Mater. 2018;7(3):1700734.

    Article 
    CAS 

    Google Scholar
     

  • Ma A, Chen H, Cui Y, Luo Z, Liang R, Wu Z, et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small. 2019;15(5):e1804028.

    Article 
    PubMed 

    Google Scholar
     

  • Rittikulsittichai S, Kolhatkar AG, Sarangi S, Vorontsova MA, Vekilov PG, Brazdeikis A, et al. Multi-responsive hybrid particles: thermo-, pH-, photo-, and magneto-responsive magnetic hydrogel cores with gold nanorod optical triggers. Nanoscale. 2016;8(23):11851–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke X, Coady DJ, Yang C, Engler AC, Hedrick JL, Yang YY. pH-sensitive polycarbonate micelles for enhanced intracellular release of anticancer drugs: a strategy to circumvent multidrug resistance. Polym Chem. 2014;5(7):2621.

    Article 
    CAS 

    Google Scholar
     

  • Hou H, Yin J, Jiang X. Reversible Diels-alder reaction to control wrinkle patterns: from dynamic chemistry to dynamic patterns. Adv Mater. 2016;28(41):9126–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Li Y, Chen C, Cheng Y. Magnetic-responsive hydrogels: from strategic design to biomedical applications. J Control Release. 2021;335:541–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang J, Qiao Y, Chu Y, Tong Z, Zhou Y, Zhang W, et al. Magnetic double-network hydrogels for tissue hyperthermia and drug release. J Mater Chem B Mater Biol Med. 2019;7(8):1311–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gang F, Yan H, Ma C, Jiang L, Gu Y, Liu Z, et al. Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chem Commun (Camb). 2019;55(66):9801–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zlotnick HM, Clark AT, Gullbrand SE, Carey JL, Cheng XM, Mauck RL. Magneto-driven gradients of diamagnetic objects for engineering complex tissues. Adv Mater. 2020;32(48):e2005030.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moncion A, Arlotta KJ, Kripfgans OD, Fowlkes JB, Carson PL, Putnam AJ, et al. Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications. Ultrasound Med Biol. 2016;42(1):257–71.

    Article 
    PubMed 

    Google Scholar
     

  • Gu Y, Zhong Y, Meng F, Cheng R, Deng C, Zhong Z. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromol. 2013;14(8):2772–80.

    Article 
    CAS 

    Google Scholar
     

  • Zou J, Jafr G, Themistou E, Yap Y, Wintrob ZP, Alexandridis P, et al. pH-Sensitive brush polymer-drug conjugates by ring-opening metathesis copolymerization. Chem Commun (Camb). 2011;47(15):4493–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou J, Zhang F, Zhang S, Pollack SF, Elsabahy M, Fan J, et al. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv Healthc Mater. 2014;3(3):441–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan Q, Zhu J, Yuan Y, Liu H, Qian J, Li Y, et al. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J Mater Chem B Mater Biol Med. 2015;3(10):2056–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abandansari HS, Ghanian MH, Varzideh F, Mahmoudi E, Rajabi S, Taheri P, et al. In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials. 2018;170:12–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodell CB, Dusaj NN, Highley CB, Burdick JA. Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv Mater. 2016;28(38):8419–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizrahi B, Shankarappa SA, Hickey JM, Dohlman JC, Timko BP, Whitehead KA, et al. A stiff injectable biodegradable elastomer. Adv Funct Mater. 2013;23(12):1527–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodell CB, Macarthur JW, Dorsey SM, Wade RJ, Wang LL, Woo YJ, et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25(4):636–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev. 2018;129:262–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Nguyen TTH, Jin J, Septiana I, Son G-M, Lee G-H, et al. Anti-cariogenic characteristics of rubusoside. Biotechnol Bioprocess Eng. 2019;24(2):282–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S-E, Lee PW, Pokorski JK. Biologically triggered delivery of EGF from polymer fiber patches. ACS Macro Lett. 2017;6(6):593–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006;103(8):2480–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu C, Chu C, Liu L, Wang C, Jin S, Yang R, et al. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. Sci Adv. 2021;7(22):eabf0787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Sun Q, Zheng ZL, Gao YT, Zhu GY, Wei Q, et al. Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways. Small. 2022;18(2):e2104328.

    Article 
    PubMed 

    Google Scholar
     

  • Chua JS, Chng CP, Moe AAK, Tann JY, Goh ELK, Chiam KH, et al. Extending neurites sense the depth of the underlying topography during neuronal differentiation and contact guidance. Biomaterials. 2014;35(27):7750–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen XQ, Chen XN, Zhu XD, Cai B, Fan HS, Zhang XD. Effect of surface topography of hydroxyapatite on human osteosarcoma MG-63 cell: effect of surface topography of hydroxyapatite on human osteosarcoma MG-63 cell. Wuji Cailiao Xuebao (J Inorganic Mater). 2013. doi.org/10.3724/sp.j.1077.2013.13058.

    Article 

    Google Scholar
     

  • Zhao C, Xia L, Zhai D, Zhang N, Liu J, Fang B, et al. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells. J Mater Chem B Mater Biol Med. 2015;3(6):968–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Z, Li G, Ruan H, Chen K, Cai Z, Lu G, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021;15(8):13041–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Liang J, Zhu Y, Hu M, Deng L, Cui W, et al. Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing. Bioact Mater. 2021;6(12):4801–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian J, Cai F, Chen H, Tang Z, Xi K, Tang J, et al. Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 2021;21(6):2690–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai Y, Gao Z, Ma L, Wang D, Gao C. Cell-free HA-MA/PLGA scaffolds with radially oriented pores for in situ inductive regeneration of full thickness cartilage defects. Macromol Biosci. 2016;16(11):1632–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Wang H, Mainardi VL, Talò G, Mccarthy A, John JV, et al. Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Sci Adv. 2021;7(31):eabg3089.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Mccarthy A, John JV, Su Y, Xie J. Converting 2D nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients regulates cell behavior. Adv Mater. 2020;32(43):e2003754.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc. 2018;13(11):2557–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y, et al. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 2012;8(10):3714–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Choi S-W, Xia Y. Modifying the pores of an inverse opal scaffold with chitosan microstructures for truly three-dimensional cell culture. Macromol Rapid Commun. 2012;33(4):296–301.

    Article 
    PubMed 

    Google Scholar
     

  • Shao C, Liu Y, Chi J, Wang J, Zhao Z, Zhao Y. Responsive inverse opal scaffolds with biomimetic enrichment capability for cell culture. Research (Wash D C). 2019;2019:9783793.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Zhao Z, Liu Y, Shao C, Bian F, Zhao Y. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci Adv. 2018;4(6):eaat2816.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Xu Q, Shang L, Wang J, Rong F, Gu Z, et al. Boronate affinity molecularly imprinted inverse opal particles for multiple label-free bioassays. Chem Commun (Camb). 2016;52(16):3296–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang YS, Zhu C, Xia Y. Inverse opal scaffolds and their biomedical applications. Adv Mater. 2017;29(33):1701115.

    Article 

    Google Scholar
     

  • Osathanon T, Giachelli CM, Somerman MJ. Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials. 2009;30(27):4513–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Carlson MA, Li X, Siddique A, Zhu W, Xie J. Minimally invasive delivery of 3D shape recoverable constructs with ordered structures for tissue repair. ACS Biomater Sci Eng. 2021;7(6):2204–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan X, Liu S, Xin X, Li P, Dou J, Han X, et al. S-nitrosated keratin composite mats with NO release capacity for wound healing. Chem Eng J. 2020;400(125964):125964.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X-H, Niu Y-N, Mi C-H, Gong H-L, Yang X-Y, Cheng J-S-Y, et al. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering. J Polym Sci. 2021;59(18):1994–2013.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, Yao H, Wang J, Wang D, Liu Q, Li Z. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int J Nanomed. 2015;10:3203–15.

    CAS 

    Google Scholar
     

  • Zhu S, Zeng W, Meng Z, Luo W, Ma L, Li Y, et al. Using wool keratin as a basic resist material to fabricate precise protein patterns. Adv Mater. 2019;31(28):e1900870.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu S, Tang Y, Lin C, Liu XY, Lin Y. Recent advances in patterning natural polymers: from nanofabrication techniques to applications. Small Methods. 2021;5(3):e2001060.

    Article 
    PubMed 

    Google Scholar
     

  • Hou H, Li F, Su Z, Yin J, Jiang X. Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles. J Mater Chem C Mater Opt Electron Devices. 2017;5(34):8765–73.

    Article 
    CAS 

    Google Scholar
     

  • Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater. 2012;24(14):1782–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffa M, Sciancalepore AG, Passione LG, Pisignano D. Combined nano- and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns. Small. 2014;10(12):2439–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus structural color hydrogel micromotors for label-free multiplex assays. Research (Wash D C). 2021;2021:9829068.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Zhang H, Zhang D, Wang J, Tan H, Kong T. Enzyme-functionalized structural color hydrogel particles for urea detection and elimination. J Clean Prod. 2021;315(128149):128149.

    Article 
    CAS 

    Google Scholar
     

  • Luo Z, Che J, Sun L, Yang L, Zu Y, Wang H, et al. Microfluidic electrospray photo-crosslinkable κ-Carrageenan microparticles for wound healing. Engin Regen. 2021;2:257–62.


    Google Scholar
     

  • Wei X, Bian F, Zhang H, Wang H, Zhu Y. Multiplex assays of bladder cancer protein markers with magnetic structural color hydrogel microcarriers based on microfluidics. Sens Actuators B Chem. 2021;346(130464):130464.

    Article 
    CAS 

    Google Scholar
     

  • Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117(12):7964–8040.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Chen G, Guo J, Liu Y, Ren J, Kong T, et al. Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Mater Horiz. 2018;5(6):1137–42.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Liu Y, Sun L, Zhao C, Chen G, Zhao Y. Biomass microcapsules with stem cell encapsulation for bone repair. Nanomicro Lett. 2021;14(1):4.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater. 2017;29(19):1606061.

    Article 

    Google Scholar
     

  • Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research (Wash D C). 2022;2022:9794745.

    CAS 
    PubMed 

    Google Scholar
     

  • Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, et al. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C Mater Biol Appl. 2007;27(3):372–6.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Liu Y, Chen Z, Sun L, Zhao Y. Anisotropic structural color particles from colloidal phase separation. Sci Adv. 2020;6(2):eaay1438.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, et al. Scaffolds with anisotropic structure for neural tissue engineering. Eng Regener. 2022;3(2):154–62.


    Google Scholar
     

  • Zhang H, Zhang H, Wang H, Zhao Y, Chai R. Natural proteins-derived asymmetric porous conduit for peripheral nerve regeneration. Appl Mater Today. 2022;27(101431):101431.

    Article 

    Google Scholar
     

  • Kong B, Sun L, Liu R, Chen Y, Shang Y, Tan H, et al. Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration. Chem Eng J. 2022;428(131012):131012.

    Article 
    CAS 

    Google Scholar
     

  • Hou H, Gan Y, Jiang X, Yin J. Facile and robust strategy to antireflective photo-curing coating through self-wrinkling. Chin Chem Lett. 2017;28(11):2147–50.

    Article 
    CAS 

    Google Scholar
     

  • Hou H, Gan Y, Yin J, Jiang X. Multifunctional POSS-based nano-photo-initiator for overcoming the oxygen inhibition of photo-polymerization and for creating self-wrinkled patterns. Adv Mater Interfaces. 2014;1(9):1400385.

    Article 

    Google Scholar
     

  • Hou H, Gan Y, Yin J, Jiang X. Polymerization-induced growth of microprotuberance on the photocuring coating. Langmuir. 2017;33(8):2027–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makvandi P, Maleki A, Shabani M, Hutton ARJ, Kirkby M, Jamaledin R, et al. Bioinspired microneedle patches: biomimetic designs, fabrication, and biomedical applications. Matter. 2022;5(2):390–429.

    Article 
    CAS 

    Google Scholar
     

  • Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, et al. Stimuli-responsive transdermal microneedle patches. Mater Today (Kidlington). 2021;47:206–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc. 2002;124(50):15030–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc Chem Res. 2017;50(4):714–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar VA, Taylor NL, Shi S, Wang BK, Jalan AA, Kang MK, et al. Highly angiogenic peptide nanofibers. ACS Nano. 2015;9(1):860–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12(1):47–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-based processing for scaffold fabrication in tissue engineering applications: a brief review. Polymers (Basel). 2021;13(13):2041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grenier J, Duval H, Barou F, Lv P, David B, Letourneur D. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 2019;94:195–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Jiang J, Hua W, Darabi A, Song X, Song C, et al. Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles. Adv Funct Mater. 2016;26(24):4293–305.

    Article 
    CAS 

    Google Scholar
     

  • Stokols S, Tuszynski MH. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials. 2004;25(27):5839–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang RM, Christman KL. Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv Drug Deliv Rev. 2016;96:77–82.

    Article 
    PubMed 

    Google Scholar
     

  • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu F, Kang T, Deng J, Liu J, Chen X, Wang Y, et al. Functional nanoparticles activate a decellularized liver scaffold for blood detoxification. Small. 2020;16(13):e2001267.

    Article 
    PubMed 

    Google Scholar
     

  • Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, et al. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A. 2022;110(3):595–611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30(29):5409–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong JY, Seo Y, Davaa G, Kim H-W, Kim SH, Hyun JK. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater. 2020;101:357–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’amore A, et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 2012;33(29):7028–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater. 2021;31(21):2010609.

    Article 
    CAS 

    Google Scholar
     

  • Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: from vascular physiology to tissue engineering applications. Front Chem. 2021;9:680836.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27(8):1452–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn S, Yoon H, Kim G, Kim Y, Lee S, Chun W. Designed three-dimensional collagen scaffolds for skin tissue regeneration. Tissue Eng Part C Methods. 2010;16(5):813–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng WL, Goh MH, Yeong WY, Naing MW. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Biomater Sci. 2018;6(3):562–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maghdouri-White Y, Sori N, Petrova S, Wriggers H, Kemper N, Dasgupta A, et al. Biomanufacturing organized collagen-based microfibers as a Tissue engineered device (TEND) for tendon regeneration. Biomed Mater. 2021;16(2):025025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, et al. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2020;12(16):18235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirkhalaf M, Goldsmith J, Ren J, Dao A, Newman P, Schindeler A, et al. Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regeneration. Appl Mater Today. 2021;25:101230.

    Article 

    Google Scholar
     

  • Yang C, Wang X, Ma B, Zhu H, Huan Z, Ma N, et al. 3D-printed bioactive Ca3SiO5 bone cement scaffolds with nano surface structure for bone regeneration. ACS Appl Mater Interfaces. 2017;9(7):5757–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, et al. Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Front Chem. 2020;8:53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little CJ, Kulyk WM, Chen X. The effect of chondroitin sulphate and hyaluronic acid on chondrocytes cultured within a fibrin-alginate hydrogel. J Funct Biomater. 2014;5(3):197–210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko C-S, Huang J-P, Huang C-W, Chu IM. Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J Biosci Bioeng. 2009;107(2):177–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee S-H. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater. 2011;10(11):877–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reversat A, Gaertner F, Merrin J, Stopp J, Tasciyan S, Aguilera J, et al. Cellular locomotion using environmental topography. Nature. 2020;582(7813):582–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 2014;13(6):558–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, et al. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci. 2018;6(2):340–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Ma J, Zhu L, Morsi Y, Ei-Hamshary H, Al-Deyab SS, et al. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids Surf B Biointerfaces. 2016;142:165–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tognetti L, Pianigiani E, Ierardi F, Lorenzini G, Casella D, Liso FG, et al. The use of human acellular dermal matrices in advanced wound healing and surgical procedures: state of the art. Dermatol Ther. 2021;34(4):e14987.

    Article 
    PubMed 

    Google Scholar
     

  • Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials. 2008;29(19):2899–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurpinski KT, Stephenson JT, Janairo RRR, Lee H, Li S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials. 2010;31(13):3536–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie J, Macewan MR, Ray WZ, Liu W, Siewe DY, Xia Y. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano. 2010;4(9):5027–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Wang H, Mccarthy A, Yan Z, Kim HJ, Carlson MA, et al. Three-dimensional objects consisting of hierarchically assembled nanofibers with controlled alignments for regenerative medicine. Nano Lett. 2019;19(3):2059–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie J, Li X, Lipner J, Manning CN, Schwartz AG, Thomopoulos S, et al. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale. 2010;2(6):923–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dapporto M, Sprio S, Fabbi C, Figallo E, Tampieri A. A novel route for the synthesis of macroporous bioceramics for bone regeneration. J Eur Ceram Soc. 2016;36(9):2383–8.

    Article 
    CAS 

    Google Scholar
     

  • John JV, McCarthy A, Wang H, Luo Z, Li H, Wang Z, et al. Freeze-casting with 3D-printed templates creates anisotropic microchannels and patterned macrochannels within biomimetic nanofiber aerogels for rapid cellular infiltration. Adv Healthc Mater. 2021;10(12):e2100238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh SH, Kim TH, Im GI, Lee JH. Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromol. 2010;11(8):1948–55.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Q, Lu H, Kawazoe N, Chen G. Preparation of collagen porous scaffolds with a gradient pore size structure using ice particulates. Mater Lett. 2013;107:280–3.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Holzwarth JM, Yan Y, Xu P, Zheng H, Yin Y, et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials. 2014;35(1):225–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu DT, Jeffreys N, Diba M, Mooney DJ. Viscoelastic biomaterials for tissue regeneration. Tissue Eng Part C Methods. 2022;28(7):289–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa JB, Park J, Jorgensen AM, Silva-Correia J, Reis RL, Oliveira JM, et al. 3D bioprinted highly elastic hybrid constructs for advanced fibrocartilaginous tissue regeneration. Chem Mater. 2020;32(19):8733–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davenport Huyer L, Zhang B, Korolj A, Montgomery M, Drecun S, Conant G, et al. Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomater Sci Eng. 2016;2(5):780–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci. 2008;33(11):1088–118.

    Article 
    CAS 

    Google Scholar
     

  • Chung HJ, Bae JW, Park HD, Lee JW, Park KD. Thermosensitive chitosans as novel injectable biomaterials. Macromol Symp. 2005;224(1):275–86.

    Article 
    CAS 

    Google Scholar
     

  • Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021;128:42–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He J, Zhang Z, Yang Y, Ren F, Li J, Zhu S, et al. Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nanomicro Lett. 2021;13(1):80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link