Mining metagenomes reveals diverse antibiotic biosynthetic genes in uncultured microbial communities

  • World Health Organization (2020) Lack of new antibiotics threatens global efforts to contain drug-resistant infections. World Health Organization, New release Geneva


    Google Scholar
     

  • Kmietowicz Z (2017) Few novel antibiotics in the pipeline, WHO warns. BMJ: British Medical Journal (Online) 358:1. doi.org/10.1136/bmj.j4339

    Article 

    Google Scholar
     

  • Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS (2013) Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrobil agen chem AAC 58(2):654–663. doi.org/10.1128/AAC.01222-13

    Article 
    CAS 

    Google Scholar
     

  • Khanna M, Solanki R, Lal R (2011) Selective isolation of rare actinomycetes producing novel antimicrobial compounds. Int J Adv Biotechnol Res 2(3):357–375

    CAS 

    Google Scholar
     

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306. doi.org/10.1128/AEM.68.9.4301-4306.2002

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59(1):143–169. doi.org/10.1128/mr.59.1.143-169.1995

    Article 
    CAS 

    Google Scholar
     

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 6885:141–147

    Article 

    Google Scholar
     

  • Hugenholtz P, Tyson GW (2008) Metagenomics. Nature 455(7212):481–483. doi.org/10.1038/455481a

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escobar-Zepeda A, Vera-Ponce de Leon A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348. doi.org/10.3389/fgene.2015.00348

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perriere G, Simonet P (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70(9):5522–5527. doi.org/10.1128/AEM.70.9.5522-5527.2004

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55. doi.org/10.1128/AEM.69.1.49-55.2003

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr R, Borenstein E (2014) Comparative analysis of functional metagenomic annotation and the mappability of short reads. PloS one 9(8):e105776. doi.org/10.1371/journal.pone.0105776

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem rev 97(7):2651–2674. doi.org/10.1021/cr960029e

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceed Nat Acad Sci 111(25):9259–9264. doi.org/10.1073/pnas.1401734111

    Article 
    CAS 

    Google Scholar
     

  • Dejong CA, Chen GM, Li H, Johnston CW, Edwards MR, Rees PN, Skinnider MA, Webster AL, Magarvey NA (2016) Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat chem biol 12(12):1007–1014. doi.org/10.1038/nchembio.2188

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488. doi.org/10.1146/annurev.micro.58.030603.123615

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem rev 105(2):715–738. doi.org/10.1021/cr0301191

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282(5386):63–68. doi.org/10.1126/science.282.5386.63

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cane DE, Walsh CT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem & biol 6(12):R319–R325. doi.org/10.1016/S1074-5521(00)80001-0

    Article 
    CAS 

    Google Scholar
     

  • Amin DH, Tolba S, Abolmaaty A, Abdallah NA, Wellington EM (2017) Phylogenetic and antimicrobial characteristics of a novel Streptomyces sp. Ru87 isolated from Egyptian soil. Int J Curr Microbiol App. Sci 6(8):2524–2541. doi.org/10.20546/ijcmas

    Article 

    Google Scholar
     

  • Amin DH, Abolmaaty A, Tolba S, Abdallah NA, Wellington EM (2017) Phylogenic characteristics of a unique antagonistic Micromonospora Sp. Rc5 to S. aureus isolated from Sinai Desert of Egypt, Cur. Res Microbiol and Biotech 5(6):1295–1306. doi.org/10.9734/ARRB/2018/38318

    Article 

    Google Scholar
     

  • Fischbach MA, Lai JR, Roche ED, Walsh CT, Liu DR (2007) Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proceed Nat Acad Sci 104(29):11951–11956. doi.org/10.1073/pnas.0705348104

    Article 
    CAS 

    Google Scholar
     

  • Komaki H, Harayama S (2006) Sequence diversity of type-II polyketide synthase genes in Streptomyces. Actinomycetologica 20(2):42–48. doi.org/10.1136/bmj.j4339

    Article 
    CAS 

    Google Scholar
     

  • Amin DH, Borsetto C, Tolba S, Abolmaaty A, Abdallah NA, Wellington EM (2017) Phylogenic analysis of NRPS and PKS genes associated with antagonistic Micromonospora Rc5 and Streptomyces Ru87 isolates. J Adv Biology & Biotechnology 16:1–22. doi.org/10.9734/JABB/2017/37592

    Article 

    Google Scholar
     

  • Amin DH, Abolmaaty A, Tolba S, Abdallah NA, Wellington EM (2017) Phylogenic characteristics of a unique antagonistic Micromonospora Sp. Rc5 to S. aureus isolated from Sinai Desert of Egypt. Cur Res Microbiol and Biotech 5(6):1295–1306. doi.org/10.9734/ARRB/2018/38318

    Article 

    Google Scholar
     

  • Kallifidas D, Kang HS, Brady SF (2012) Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Ameri Chem Soc 134(48):19552–19555. doi.org/10.1021/ja3093828

    Article 
    CAS 

    Google Scholar
     

  • Amos GC, Borsetto C, Laskaris P, Krsek M, Berry AE, Newsham KK, Calvo-Bado L, Pearce DA, Vallin C, Wellington EM (2015) Designing and implementing an assay for the detection of rare and divergent NRPS and PKS clones in European, Antarctic and Cuban soils. PloS one 10(9):e0138327. doi.org/10.1371/journal.pone.0138327

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbiol ecol 49(1):10–24. doi.org/10.1007/s00248-004-0249-6

    Article 
    CAS 

    Google Scholar
     

  • Miller G, Lipman M (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proceed Nat Acad Sci 70(1):190–194. doi.org/10.1073/pnas.70.1.190

    Article 
    CAS 

    Google Scholar
     

  • Mootz HD, Marahiel MA (1997) The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J bacteriol 179(21):6843–6850. doi.org/10.1128/jb.179.21.6843-6850.199

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Amer Chem Soc 124(37):10980–10981. doi.org/10.1021/ja027276m

    Article 
    CAS 

    Google Scholar
     

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series


    Google Scholar
     

  • Tejman-Yarden N, Robinson A, Davidov Y, Shulman A, Varvak A, Reyes F, Rahav G, Nissan I (2019) Delftibactin-A, a non-ribosomal peptide with broad antimicrobial activity. Front in Microbiol 10:2377. doi.org/10.3389/fmicb.2019.02377

    Article 

    Google Scholar
     

  • Morel MA, Iriarte A, Jara E, Musto H, Castro-Sowinski S (2016) Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioeng 3(2):156–175. doi.org/10.1128/jb.179.21.6843-6850.1997

    Article 
    CAS 

    Google Scholar
     

  • Guo H, Yang Y, Liu K, Xu W, Gao J, Duan H, Du B, Ding Y, Wang C (2016) Comparative genomic analysis of Delftia tsuruhatensis MTQ3 and the identification of functional NRPS genes for siderophore production. BioMed Res Intern 2016:3687619. doi.org/10.1155/2016/3687619

    Article 
    CAS 

    Google Scholar
     

  • Ziemert N, Jensen PR (2012) Phylogenetic approaches to natural product structure prediction. Meth in enzym 517:161–182. doi.org/10.1016/B978-0-12-404634-4.00008-5

    Article 

    Google Scholar
     

  • Wang L, Jiang T (1994) On the complexity of multiple sequence alignment. Journal of comput bio. 1(4):337–348. doi.org/10.1089/cmb.1994.1.337

    Article 
    CAS 

    Google Scholar
     

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl acids res 22(22):4673–4680. doi.org/10.1093/nar/22.22.4673

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol biol evol 30(12):2725–2729. doi.org/10.1093/molbev/mst197

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J mol evol 50(1):56–68. doi.org/10.1007/s002399910007

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dagan TY, Graur D (2002) Ratios of radical to conservative amino acid replacement are affected by mutational and compositional factors and may not be indicative of positive Darwinian selection. Mol biol evol 19(7):1022–1025. doi.org/10.1093/oxfordjournals.molbev.a004161

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivalingam P, Muthuselvam M, Pote J, Prabakar K (2019) Phylogenetic insight of nonribosomal peptide synthetases (NRPS) adenylate domain in antibacterial potential Streptomyces BDUSMP 02 isolated from Pitchavaram Mangrove. Bioinformation 15(6):412. doi.org/10.6026/97320630015412

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owen JG, Calcott MJ, Robins KJ, Ackerley DF (2016) Generating functional recombinant NRPS enzymes in the laboratory setting via peptidyl carrier protein engineering. Cell chem biol 23(11):1395–1406. doi.org/10.1016/j.chembiol.2016.09.014

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucl acids res 33(18):5799–5808. doi.org/10.1093/nar/gki88

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agüero-Chapin G, Pérez-Machado G, Sánchez-Rodríguez A, Santos MM, Antunes A (2016) Alignment-free methods for the detection and specificity prediction of adenylation domains. In: Nonribosomal Peptide and Polyketide Biosynthesis. Humana Press, New York, NY, pp 253–272

    Chapter 

    Google Scholar
     

  • Chang Z, Flatt P, Gerwick WH, Nguyen VA, Willis CL, Sherman DH (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296(1-2):235–247. doi.org/10.1016/S0378-1119(02)00860-0

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem & biol 6(8):493–505. doi.org/10.1016/S1074-5521(99)80082-9

    Article 
    CAS 

    Google Scholar
     

  • Borsetto C (2017) Study and exploitation of diverse soil environments for novel natural product discovery using metagenomic approaches (Doctoral dissertation. University of Warwick)


    Google Scholar
     

  • Edlefsen PT, Liu JS (2010) Transposon identification using profile HMMs. BMC Genomics. b 10(11 Suppl 1(Suppl 1)):S10

    Article 

    Google Scholar
     

  • Phelan VV, Moree WJ, Aguilar J, Cornett DS, Koumoutsi A, Noble SM, Pogliano K, Guerrero CA, Dorrestein PC (2014) Impact of a transposon insertion in phzF2 on the specialized metabolite production and interkingdom interactions of Pseudomonas aeruginosa. J Bacteriol May 196(9):1683–1693. doi.org/10.1128/JB.01258-13

    Article 
    CAS 

    Google Scholar
     

  • Hotchkiss RD, Dubos RJ (1940) Fractionation of the bactericidal agent from cultures of a soil Bacillus. J Biolog Chem 132(2):791–792

    Article 
    CAS 

    Google Scholar
     

  • Stankovic CJ (1990) 1. A two-directional chain synthesis approach to 6-deoxyerythronolide B. 2. Design, synthesis, and analysis of new ion channels based on the gramicidin A motif. Harvard University


    Google Scholar
     

  • Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biolog Chem 279(9):7413–7419

    Article 
    CAS 

    Google Scholar
     

  • Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein engr 15(11):913–921. doi.org/10.1093/protein/15.11.913

    Article 
    CAS 

    Google Scholar
     

  • Read more here: Source link