World Health Organization (2020) Lack of new antibiotics threatens global efforts to contain drug-resistant infections. World Health Organization, New release Geneva
Kmietowicz Z (2017) Few novel antibiotics in the pipeline, WHO warns. BMJ: British Medical Journal (Online) 358:1. doi.org/10.1136/bmj.j4339
Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS (2013) Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrobil agen chem AAC 58(2):654–663. doi.org/10.1128/AAC.01222-13
Khanna M, Solanki R, Lal R (2011) Selective isolation of rare actinomycetes producing novel antimicrobial compounds. Int J Adv Biotechnol Res 2(3):357–375
Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306. doi.org/10.1128/AEM.68.9.4301-4306.2002
Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59(1):143–169. doi.org/10.1128/mr.59.1.143-169.1995
Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 6885:141–147
Hugenholtz P, Tyson GW (2008) Metagenomics. Nature 455(7212):481–483. doi.org/10.1038/455481a
Escobar-Zepeda A, Vera-Ponce de Leon A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348. doi.org/10.3389/fgene.2015.00348
Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310
Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perriere G, Simonet P (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70(9):5522–5527. doi.org/10.1128/AEM.70.9.5522-5527.2004
Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55. doi.org/10.1128/AEM.69.1.49-55.2003
Carr R, Borenstein E (2014) Comparative analysis of functional metagenomic annotation and the mappability of short reads. PloS one 9(8):e105776. doi.org/10.1371/journal.pone.0105776
Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem rev 97(7):2651–2674. doi.org/10.1021/cr960029e
Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceed Nat Acad Sci 111(25):9259–9264. doi.org/10.1073/pnas.1401734111
Dejong CA, Chen GM, Li H, Johnston CW, Edwards MR, Rees PN, Skinnider MA, Webster AL, Magarvey NA (2016) Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat chem biol 12(12):1007–1014. doi.org/10.1038/nchembio.2188
Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488. doi.org/10.1146/annurev.micro.58.030603.123615
Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem rev 105(2):715–738. doi.org/10.1021/cr0301191
Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282(5386):63–68. doi.org/10.1126/science.282.5386.63
Cane DE, Walsh CT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem & biol 6(12):R319–R325. doi.org/10.1016/S1074-5521(00)80001-0
Amin DH, Tolba S, Abolmaaty A, Abdallah NA, Wellington EM (2017) Phylogenetic and antimicrobial characteristics of a novel Streptomyces sp. Ru87 isolated from Egyptian soil. Int J Curr Microbiol App. Sci 6(8):2524–2541. doi.org/10.20546/ijcmas
Amin DH, Abolmaaty A, Tolba S, Abdallah NA, Wellington EM (2017) Phylogenic characteristics of a unique antagonistic Micromonospora Sp. Rc5 to S. aureus isolated from Sinai Desert of Egypt, Cur. Res Microbiol and Biotech 5(6):1295–1306. doi.org/10.9734/ARRB/2018/38318
Fischbach MA, Lai JR, Roche ED, Walsh CT, Liu DR (2007) Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proceed Nat Acad Sci 104(29):11951–11956. doi.org/10.1073/pnas.0705348104
Komaki H, Harayama S (2006) Sequence diversity of type-II polyketide synthase genes in Streptomyces. Actinomycetologica 20(2):42–48. doi.org/10.1136/bmj.j4339
Amin DH, Borsetto C, Tolba S, Abolmaaty A, Abdallah NA, Wellington EM (2017) Phylogenic analysis of NRPS and PKS genes associated with antagonistic Micromonospora Rc5 and Streptomyces Ru87 isolates. J Adv Biology & Biotechnology 16:1–22. doi.org/10.9734/JABB/2017/37592
Amin DH, Abolmaaty A, Tolba S, Abdallah NA, Wellington EM (2017) Phylogenic characteristics of a unique antagonistic Micromonospora Sp. Rc5 to S. aureus isolated from Sinai Desert of Egypt. Cur Res Microbiol and Biotech 5(6):1295–1306. doi.org/10.9734/ARRB/2018/38318
Kallifidas D, Kang HS, Brady SF (2012) Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Ameri Chem Soc 134(48):19552–19555. doi.org/10.1021/ja3093828
Amos GC, Borsetto C, Laskaris P, Krsek M, Berry AE, Newsham KK, Calvo-Bado L, Pearce DA, Vallin C, Wellington EM (2015) Designing and implementing an assay for the detection of rare and divergent NRPS and PKS clones in European, Antarctic and Cuban soils. PloS one 10(9):e0138327. doi.org/10.1371/journal.pone.0138327
Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbiol ecol 49(1):10–24. doi.org/10.1007/s00248-004-0249-6
Miller G, Lipman M (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proceed Nat Acad Sci 70(1):190–194. doi.org/10.1073/pnas.70.1.190
Mootz HD, Marahiel MA (1997) The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J bacteriol 179(21):6843–6850. doi.org/10.1128/jb.179.21.6843-6850.199
Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Amer Chem Soc 124(37):10980–10981. doi.org/10.1021/ja027276m
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series
Tejman-Yarden N, Robinson A, Davidov Y, Shulman A, Varvak A, Reyes F, Rahav G, Nissan I (2019) Delftibactin-A, a non-ribosomal peptide with broad antimicrobial activity. Front in Microbiol 10:2377. doi.org/10.3389/fmicb.2019.02377
Morel MA, Iriarte A, Jara E, Musto H, Castro-Sowinski S (2016) Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioeng 3(2):156–175. doi.org/10.1128/jb.179.21.6843-6850.1997
Guo H, Yang Y, Liu K, Xu W, Gao J, Duan H, Du B, Ding Y, Wang C (2016) Comparative genomic analysis of Delftia tsuruhatensis MTQ3 and the identification of functional NRPS genes for siderophore production. BioMed Res Intern 2016:3687619. doi.org/10.1155/2016/3687619
Ziemert N, Jensen PR (2012) Phylogenetic approaches to natural product structure prediction. Meth in enzym 517:161–182. doi.org/10.1016/B978-0-12-404634-4.00008-5
Wang L, Jiang T (1994) On the complexity of multiple sequence alignment. Journal of comput bio. 1(4):337–348. doi.org/10.1089/cmb.1994.1.337
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl acids res 22(22):4673–4680. doi.org/10.1093/nar/22.22.4673
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol biol evol 30(12):2725–2729. doi.org/10.1093/molbev/mst197
Zhang J (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J mol evol 50(1):56–68. doi.org/10.1007/s002399910007
Dagan TY, Graur D (2002) Ratios of radical to conservative amino acid replacement are affected by mutational and compositional factors and may not be indicative of positive Darwinian selection. Mol biol evol 19(7):1022–1025. doi.org/10.1093/oxfordjournals.molbev.a004161
Sivalingam P, Muthuselvam M, Pote J, Prabakar K (2019) Phylogenetic insight of nonribosomal peptide synthetases (NRPS) adenylate domain in antibacterial potential Streptomyces BDUSMP 02 isolated from Pitchavaram Mangrove. Bioinformation 15(6):412. doi.org/10.6026/97320630015412
Owen JG, Calcott MJ, Robins KJ, Ackerley DF (2016) Generating functional recombinant NRPS enzymes in the laboratory setting via peptidyl carrier protein engineering. Cell chem biol 23(11):1395–1406. doi.org/10.1016/j.chembiol.2016.09.014
Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucl acids res 33(18):5799–5808. doi.org/10.1093/nar/gki88
Agüero-Chapin G, Pérez-Machado G, Sánchez-Rodríguez A, Santos MM, Antunes A (2016) Alignment-free methods for the detection and specificity prediction of adenylation domains. In: Nonribosomal Peptide and Polyketide Biosynthesis. Humana Press, New York, NY, pp 253–272
Chang Z, Flatt P, Gerwick WH, Nguyen VA, Willis CL, Sherman DH (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296(1-2):235–247. doi.org/10.1016/S0378-1119(02)00860-0
Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem & biol 6(8):493–505. doi.org/10.1016/S1074-5521(99)80082-9
Borsetto C (2017) Study and exploitation of diverse soil environments for novel natural product discovery using metagenomic approaches (Doctoral dissertation. University of Warwick)
Edlefsen PT, Liu JS (2010) Transposon identification using profile HMMs. BMC Genomics. b 10(11 Suppl 1(Suppl 1)):S10
Phelan VV, Moree WJ, Aguilar J, Cornett DS, Koumoutsi A, Noble SM, Pogliano K, Guerrero CA, Dorrestein PC (2014) Impact of a transposon insertion in phzF2 on the specialized metabolite production and interkingdom interactions of Pseudomonas aeruginosa. J Bacteriol May 196(9):1683–1693. doi.org/10.1128/JB.01258-13
Hotchkiss RD, Dubos RJ (1940) Fractionation of the bactericidal agent from cultures of a soil Bacillus. J Biolog Chem 132(2):791–792
Stankovic CJ (1990) 1. A two-directional chain synthesis approach to 6-deoxyerythronolide B. 2. Design, synthesis, and analysis of new ion channels based on the gramicidin A motif. Harvard University
Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biolog Chem 279(9):7413–7419
Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein engr 15(11):913–921. doi.org/10.1093/protein/15.11.913
Read more here: Source link