Modelling the impact of historic landscape change on soil erosion and degradation

  • Olsson, L. et al. Land Degradation. in Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (eds. Shukla, P. R. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).

  • Panagos, P. et al. Projections of soil loss by water erosion in Europe by 2050. Environ. Sci. Policy 124, 380–392 (2021).

    Article 

    Google Scholar
     

  • FAO. Outcome document of the Global Symposium on Soil Erosion. www.fao.org/3/ca5697en/ca5697en.pdf (2019).

  • Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. U. S. A. 117, 21994–22001 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. U. S. A. 104, 13268–13272 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, S., Kinnaird, T., Koparal, E., Lekakis, S. & Sevara, C. Landscape archaeology, sustainability and the necessity of change. World Archaeol. 52, 589–606 (2020).

    Article 

    Google Scholar
     

  • Arıkan, B., Mohr, F. & Bürgi, M. Exploring the common ground of landscape ecology and landscape archaeology through a case study from eastern Anatolia, Turkey. Landsc. Ecol. 36, 2295–2315 (2021).

    Article 

    Google Scholar
     

  • Brandolini, F. & Cremaschi, M. The impact of late holocene flood management on the Central Po Plain (Northern Italy). Sustain. Sci. Pract. Policy 10, 3968 (2018).


    Google Scholar
     

  • Fisher, C. Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393–441 (2020).

    Article 

    Google Scholar
     

  • Scharf, E. A. Deep time: The emerging role of archaeology in landscape ecology. Landsc. Ecol. 29, 563–569 (2014).

    Article 

    Google Scholar
     

  • Harvey, D. Landscape and heritage: trajectories and consequences. Landsc. Res. 40, 911–924 (2015).

    Article 

    Google Scholar
     

  • Doneus, M., Doneus, N. & Cowley, D. Confronting complexity: interpretation of a dry stone walled landscape on the island of Cres, Croatia. Land 11, 1672 (2022).

    Article 

    Google Scholar
     

  • Busquin, P. Getting Cultural Heritage to Work for Europe: Report of the Horizon 2020 Expert Group on Cultural Heritage (Publications Office of the European Union, 2015).


    Google Scholar
     

  • Baessler, C. & Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 115, 43–50 (2006).

    Article 

    Google Scholar
     

  • Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry Systems in the Temperate Zone. In An Introduction to Agroforestry: Four Decades of Scientific Developments (eds Nair, P. K. R. et al.) 195–232 (Springer International Publishing, 2021).

    Chapter 

    Google Scholar
     

  • Zerbe, S. Global Land-Use Development Trends: Traditional Cultural Landscapes Under Threat. In Restoration of Multifunctional Cultural Landscapes: Merging Tradition and Innovation for a Sustainable Future (ed. Zerbe, S.) 129–199 (Springer International Publishing, 2022).

    Chapter 

    Google Scholar
     

  • Arnaez, J., Lasanta, T., Errea, M. P. & Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degrad. Dev. 22, 537–550 (2011).

    Article 

    Google Scholar
     

  • Calvo-Iglesias, M. S., Fra-Paleo, U. & Diaz-Varela, R. A. Changes in farming system and population as drivers of land cover and landscape dynamics: The case of enclosed and semi-openfield systems in Northern Galicia (Spain). Landsc. Urban Plan. 90, 168–177 (2009).

    Article 

    Google Scholar
     

  • Brandolini, F. & Turner, S. Revealing patterns and connections in the historic landscape of the northern Apennines (Vetto, Italy). J. Maps doi.org/10.1080/17445647.2022.2088305 (2022).

    Article 

    Google Scholar
     

  • Kay, S. et al. Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agrofor. Syst. 92, 1075–1089 (2018).

    Article 

    Google Scholar
     

  • Montanarella, L. & Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100, 104950 (2021).

    Article 

    Google Scholar
     

  • Turner, S. et al. Agricultural terraces in the Mediterranean: medieval intensification revealed by OSL profiling and dating. Antiquity 95, 773–790 (2021).

    Article 

    Google Scholar
     

  • Raap, E. Farming the Historic Landscape: Towards a Better Integration of Cultural Heritage in a Sustainable Future Common Agricultural Policy (Reflection Group EU and Cultural Heritage, 2017).


    Google Scholar
     

  • EU Commission. Key policy objectives of the new CAP. agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27/key-policy-objectives-new-cap_en#documents (2022).

  • Boardman, J. & Evans, R. The measurement, estimation and monitoring of soil erosion by runoff at the field scale: Challenges and possibilities with particular reference to Britain. Prog. Phys. Geogr. Earth Environ. 44, 31–49 (2020).

    Article 

    Google Scholar
     

  • Bezak, N. et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 197, 111087 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • FAO-ITPS. Protocol for the assessment of Sustainable Soil Management. (2020).

  • Ghosal, K. & Das Bhattacharya, S. A review of RUSLE model. J. Indian Soc. Remote Sens. 48, 689–707 (2020).

    Article 

    Google Scholar
     

  • Borrelli, P. et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 780, 146494 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renard, K. G. et al. Predicting soil erosion by water: A guide to conservation planning with the Revised universal soil loss equation (RUSLE). Agric. Handb. 703, 23 (1996).


    Google Scholar
     

  • López-Vicente, M. & Guzmán, G. Chapter 13 – Measuring Soil Erosion and Sediment Connectivity at Distinct Scales. In Precipitation (ed. Rodrigo-Comino, J.) 287–326 (Elsevier, 2021).

    Chapter 

    Google Scholar
     

  • Tian, P. et al. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. Int. Soil Water Conserv. Res. 9, 433–444 (2021).

    Article 

    Google Scholar
     

  • Guttmann-Bond, E. Reinventing Sustainability: How Archaeology Can Save the Planet (Oxbow Books, 2019).


    Google Scholar
     

  • Panagos, P. et al. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 51, 23–34 (2015).

    Article 

    Google Scholar
     

  • Turner, S. Historic landscape characterisation: A landscape archaeology for research, management and planning. Landsc. Res. 31, 385–398 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Dabaut, N. & Carrer, F. Historic landscape characterisation: technical approaches beyond theory. Landscapes 21, 152–167 (2020).

    Article 

    Google Scholar
     

  • Hateffard, F. et al. CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Sci. Rep. 11, 7273 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clerici, A., Perego, S., Tellini, C. & Vescovi, P. Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy). Nat. Hazards 52, 1–29 (2010).

    Article 

    Google Scholar
     

  • MAB. Man and the Biosphere Unesco reserve of the Tuscan – Emilian Apennines www.mabappennino.it/index.php (2015).

  • Bini, C. Geology and Geomorphology. In The Soils of Italy (eds Costantini, E. A. C. & Dazzi, C.) 39–56 (Springer Netherlands, 2013).

    Chapter 

    Google Scholar
     

  • Cremaschi, M. et al. The SUCCESSO-TERRA project: A lesson of sustainability from the terramare culture, middle bronze age of the Po plain (northern Italy). Interdiscip. Archaeol. IX, 221–229 (2018).

  • Rombai, L. & Bomcompagni, A. Popolazione, popolamento, sistemi colturali, spazi coltivati, aree boschive ed incolte. in Storia dell’agricoltura italiana – IL MEDIOEVO E L’ETÀ MODERNA (eds. Pinto, G., Poni, C. & Tucci, U.) vol. II 171–222 (Polistampa, 2010).

  • Montanari, M. Colture, lavori, tecniche, rendimenti. in Storia dell’agricoltura italiana – IL MEDIOEVO E L’ETÀ MODERNA (eds. Pinto, G., Poni, C. & Tucci, U.) vol. II 59–82 (Polistampa, 2010).

  • Haller, A. & Bender, O. Among rewilding mountains: Grassland conservation and abandoned settlements in the Northern Apennines. Landsc. Res. 43, 1068–1084 (2018).

    Article 

    Google Scholar
     

  • QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2021).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2022).

  • RStudio Team. RStudio: Integrated Development for R. (RStudio, Inc., 2022).

  • Geoportale ER. Regione Emilia Romagna geoportale.regione.emilia-romagna.it/ (2021).

  • Sereni, E. Storia del paesaggio agrario italiano. (1961).

  • Kinnaird, T., Bolòs, J., Turner, A. & Turner, S. Optically-stimulated luminescence profiling and dating of historic agricultural terraces in Catalonia (Spain). J. Archaeol. Sci. 78, 66–77 (2017).

    Article 

    Google Scholar
     

  • Vervust, S., Kinnaird, T., Herring, P. & Turner, S. Optically stimulated luminescence profiling and dating of earthworks: The creation and development of prehistoric field boundaries at Bosigran, Cornwall. Antiquity 94, 420–436 (2020).

    Article 

    Google Scholar
     

  • Yutzler, J. & Daise, P. OGC® – GeoPackage Encoding Standard. (2021).

  • Soil erosion (1:50k) map – Emilia Romagna Region. mappegis.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/download/erosione_idrica_2019_raster.zip (2019).

  • Staffilani, F., Bonaposta, D., Marucci, F. E. & Tarocco, P. Carta dell’erosione Idrica Attuale della Regione Emilia Romagna – Note Illustrative. mappegis.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/NOTE_ILLUSTRATIVE_EROSIONE.pdf (2019).

  • Panagos, P. et al. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48, 38–50 (2015).

    Article 

    Google Scholar
     

  • Geoportale, E. R. Database Uso del Suolo. Regione Emilia Romagna geoportale.regione.emilia-romagna.it/approfondimenti/database-uso-del-suolo (2022).

  • Kosztra, B. & Büttner, G. Updated CLC illustrated nomenclature guidelines. land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf (2019).

  • Cebecauer, T. & Hofierka, J. The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology 98, 187–198 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Adhikary, P. P., Hombegowda, H. C., Barman, D., Jakhar, P. & Madhu, M. Soil erosion control and carbon sequestration in shifting cultivated degraded highlands of eastern India: Performance of two contour hedgerow systems. Agrofor. Syst. 91, 757–771 (2017).

    Article 

    Google Scholar
     

  • GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software. (2022).

  • Dass, A., Sudhishri, S., Lenka, N. K. & Patnaik, U. S. Runoff capture through vegetative barriers and planting methodologies to reduce erosion, and improve soil moisture, fertility and crop productivity in southern Orissa, India. Nutr. Cycl. Agroecosyst. 89, 45–57 (2011).

    Article 

    Google Scholar
     

  • Parveen, R. & Kumar, U. Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in upper south koel basin. Jharkhand. N. Z. Cartogr. Geogr. Inf. Syst. 04, 588–596 (2012).


    Google Scholar
     

  • Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: A Grammar of Data Manipulation. dplyr.tidyverse.org, github.com/tidyverse/dplyr (2023).

  • Pebesma, E., & Bivand, R. Spatial Data Science: With Applications in R 1st edn doi.org/10.1201/9780429459016 (Chapman and Hall/CRC, 2023).


    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    Book 
    MATH 

    Google Scholar
     

  • Assini, S., Filipponi, F. & Zucca, F. Land cover changes in an abandoned agricultural land in the Northern Apennine (Italy) between 1954 and 2008: Spatio-temporal dynamics. Plant Biosyst. Int. J. Dealing Asp. Plant Biol. 149, 807–817 (2015).


    Google Scholar
     

  • Argenti, G., Parrini, S., Staglianò, N. & Bozzi, R. Evolution of production and forage quality in sown meadows of a mountain area inside Parmesan cheese consortium. Agron. Res. 19, 344–356 (2021).


    Google Scholar
     

  • Augère-Granier, M.-L. Agroforestry in the European Union. www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf (2020).

  • EIP-AGRI. Workshop Towards carbon neutral agriculture WORKSHOP REPORT 24–25 March 2021. ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_ws_carbon_neutral_agriculture_final_report_2021_en_lr.pdf (2021).

  • Tošić, R., Lovrić, N. & Dragićević, S. Assessment of the impact of depopulation on soil erosion: Case study–republika srpska (bosnia and herzegovina). Carpathian J. Earth Environ. Sci. 14, 505–518 (2019).

    Article 

    Google Scholar
     

  • Carretta, L. et al. Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. CATENA 197, 104972 (2021).

    Article 

    Google Scholar
     

  • Antràs, P. De-globalisation? Global value chains in the post-COVID-19 age. www.nber.org/papers/w28115.pdf (2020) doi:doi.org/10.3386/w28115.

  • Arias, M. et al. Deglobalization in COVID-19 Times: New Routes for Global Business. In Globalization, Deglobalization, and New Paradigms in Business (eds Paul, J. & Dhir, S.) 173–188 (Springer International Publishing, 2021).

    Chapter 

    Google Scholar
     

  • EAFRD. Rural Development Programmes 2014–2020: Key facts & figures. enrd.ec.europa.eu/sites/default/files/focus-area-summary_5e.pdf (2014).

  • Bishaw, B., Soolanayakanahally, R., Karki, U. & Hagan, E. Agroforestry for sustainable production and resilient landscapes. Agrofor. Syst. 96, 447–451 (2022).

    Article 

    Google Scholar
     

  • Santiago-Freijanes, J. J. et al. Global and European policies to foster agricultural sustainability: Agroforestry. Agrofor. Syst. 95, 775–790 (2021).

    Article 

    Google Scholar
     

  • Messean, A., Viguier, L. & Paresys, L. Enabling crop diversification to support transitions towards more sustainable European agrifood systems. Front. Agric. Sci. Eng. 8, 474–480 (2021).


    Google Scholar
     

  • Kay, S. et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83, 581–593 (2019).

    Article 

    Google Scholar
     

  • Panagos, P. et al. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 610, 127865 (2022).

    Article 

    Google Scholar
     

  • Mitchell, N., Rössler, M. & Tricaud, P.-M. World Heritage Cultural Landscapes: A Handbook for Conservation and Management (UNESCO World Heritage Centre, 2009).


    Google Scholar
     

  • Fredholm, S., Eliasson, I. & Knez, I. Conservation of historical landscapes: What signifies ‘successful’ management?. Landsc. Res. 43, 735–748 (2018).

    Article 

    Google Scholar
     

  • Karcagi, K. A. & Katona, K. J. Factors of population decline in rural areas and answers given in EU member states’ strategies. Food Res. Inst. Stud. Agric. Econ. Trade Dev. 114, 49–56 (2012).


    Google Scholar
     

  • Read more here: Source link