Comparative genomic analysis of Colistin resistant Escherichia coli isolated from pigs, a human and wastewater on colistin withdrawn pig farm

  • Cheng, P. et al. Prevalence and characteristic of swine-origin mcr-1-positive Escherichia coli in Northeastern China. Front Microbiol 12, 712707. doi.org/10.3389/fmicb.2021.712707 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis 16, 161–168. doi.org/10.1016/S1473-3099(15)00424-7 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, C. et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: A prospective cross-sectional and whole genome sequencing-based molecular epidemiological study. The Lancet Microbe 1, e34–e43. doi.org/10.1016/S2666-5247(20)30005-7 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Expanding landscapes of the diversified mcr-1-bearing plasmid reservoirs. Microbiome 5, 70. doi.org/10.1186/s40168-017-0288-0 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, W. et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 8, e00543-17. doi.org/10.1128/mBio.00543-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wand, M. E., Bock, L. J., Bonney, L. C. & Sutton, J. M. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob. Agents Chemother. 61, e01162-16. doi.org/10.1128/AAC.01162-16 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, F., Zeng, X., Hinenoya, A. & Lin, J. mcr-1 confers cross-resistance to bacitracin, a widely used in-feed antibiotic. mSphere 3, e00411-18. doi.org/10.1128/mSphere.00411-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khine, N. O. et al. Longitudinal monitoring reveals persistence of colistin-resistant Escherichia coli on a pig farm following cessation of colistin use. Front. Vet. Sci. 9, 845746. doi.org/10.3389/fvets.2022.845746 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler, C. & Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3, 399. doi.org/10.3389/fmicb.2012.00399 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNeilly, O., Mann, R., Hamidian, M. & Gunawan, C. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol. 12, 652863. doi.org/10.3389/fmicb.2021.652863 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, W. Y. et al. Clonal spread of Escherichia coli O101: H9-ST10 and O101: H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101: H9-ST10. Zool. Res. 42, 461–468. doi.org/10.24272/j.issn.2095-8137.2021.153 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Contrepois, M., Bertin, Y., Pohl, P., Picard, B. & Girardeau, J.-P. A study of relationships among F17 a producing enterotoxigenic and non-enterotoxigenic Escherichia coli strains isolated from diarrheic calves. Vet. Microbiol. 64, 75–81. doi.org/10.1016/S0378-1135(98)00253-3 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Begaud, E., Mondet, D. & Germani, Y. Molecular characterization of enterotoxigenic Escherichia coli (ETEC) isolated in New Caledonia (value of potential protective antigens in oral vaccine candidates). Res. Microbiol. 144, 721–728. doi.org/10.1016/0923-2508(93)90036-2 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. et al. Fitness Advantage of mcr-1-bearing IncI2 and IncX4 plasmids in vitro. Front. Microbiol. 9, 331. doi.org/10.3389/fmicb.2018.00331 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paveenkittiporn, W., Kamjumphol, W., Ungcharoen, R. & Kerdsin, A. Whole-genome sequencing of clinically isolated carbapenem-resistant Enterobacterales harboring mcr genes in Thailand, 2016–2019. Front Microbiol 11, 586368. doi.org/10.3389/fmicb.2020.586368 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, R. et al. Comprehensive genomic investigation of coevolution of mcr genes in Escherichia coli strains via nanopore sequencing. Glob. Chall. 5, 2000014. doi.org/10.1002/gch2.202000014 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozwandowicz, M. et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother 73, 1121–1137. doi.org/10.1093/jac/dkx488 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. mcr expression conferring varied fitness costs on host bacteria and affecting bacteria virulence. Antibiotics (Basel) 10, 872. doi.org/10.3390/antibiotics10070872 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meinersmann, R. J. The biology of IncI2 plasmids shown by whole-plasmid multi-locus sequence typing. Plasmid 106, 102444. doi.org/10.1016/j.plasmid.2019.102444 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tansawai, U. et al. Emergence of mcr-3-mediated IncP and IncFII plasmids in Thailand. J. Glob. Antimicrob. Resist. 24, 446–447. doi.org/10.1016/j.jgar.2021.02.006 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vines, J. et al. Transmission of similar mcr-1 carrying plasmids among different Escherichia coli lineages isolated from livestock and the farmer. Antibiotics (Basel) 10, 313. doi.org/10.3390/antibiotics10030313 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snesrud, E., McGann, P. & Chandler, M. The Birth and demise of the ISApl1-mcr-1-ISApl1 composite transposon: The vehicle for transferable colistin resistance. MBio 9, e02381-17. doi.org/10.1128/mBio.02381-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snesrud, E. et al. Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon. Antimicrob. Agents Chemother. 61, e00056-17. doi.org/10.1128/AAC.00056-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: An epidemiological and clinical study. Lancet Infect. Dis. 17, 390–399. doi.org/10.1016/S1473-3099(16)30527-8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Q. E. et al. Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones. ISME J. 14, 861–865. doi.org/10.1038/s41396-019-0578-6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alba, P. et al. Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonized antimicrobial resistance monitoring. Front. Microbiol. 9, 1217. doi.org/10.3389/fmicb.2018.01217 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-27. doi.org/10.1128/CMR.00088-17 (2018).

    Article 

    Google Scholar
     

  • Carroll, A. C. & Wong, A. Plasmid persistence: Costs, benefits, and the plasmid paradox. Can. J. Microbiol. 64, 293–304. doi.org/10.1139/cjm-2017-0609 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandegren, L., Lindqvist, A., Kahlmeter, G. & Andersson, D. I. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J. Antimicrob. Chemother. 62, 495–503. doi.org/10.1093/jac/dkn222 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • San Millan, A. et al. Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob. Agents Chemother. 53, 3399–3404 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: A meta-analysis approach. Evol. Appl. 8, 284–295. doi.org/10.1111/eva.12202 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791. doi.org/10.3389/fmicb.2015.00791 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rebelo, A. R. et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23, 17–00672. doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khine, N. O. et al. Multidrug resistance and virulence factors of Escherichia coli harboring plasmid-mediated colistin resistance: mcr-1 and mcr-3 genes in contracted pig farms in Thailand. Front. Vet. Sci. 7, 582899. doi.org/10.3389/fvets.2020.582899 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob. Agents chemother. 47, 2242–2248 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi.org/10.1093/bioinformatics/btu170 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595. doi.org/10.1371/journal.pcbi.1005595 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357. doi.org/10.1128/AAC.00419-13 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220. doi.org/10.1128/AAC.01310-13 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44, D694-697. doi.org/10.1093/nar/gkv1239 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. doi.org/10.1093/bioinformatics/btu153 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hua, X. et al. BacAnt: A Combination annotation server for bacterial DNA sequences to identify antibiotic resistance genes, integrons, and transposable elements. Front. Microbiol. 12, 649969. doi.org/10.3389/fmicb.2021.649969 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. & Larsson, D. G. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42, D737-743. doi.org/10.1093/nar/gkt1252 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alikhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics 12, 402. doi.org/10.1186/1471-2164-12-402 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: A genome comparison visualizer. Bioinformatics 27, 1009–1010. doi.org/10.1093/bioinformatics/btr039 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi.org/10.1093/molbev/mst010 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link