DNAfusion: an R/Bioconductor package for increased sensitivity of detecting gene fusions in liquid biopsies | BMC Bioinformatics

  • Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15(6):371–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):261–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gainor JF, Curigliano G, Kim DW, Lee DH, Besse B, Baik CS, et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021;22(7):959–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong DS, DuBois SG, Kummar S, Farago AF, Albert CM, Rohrberg KS, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21(4):531–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruno R, Fontanini G. Next generation sequencing for gene fusion analysis in lung cancer: a literature review. Diagnostics (Basel). 2020;10(8):521.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez J, Avila J, Rolfo C, Ruíz-Patiño A, Russo A, Ricaurte L, et al. When tissue is an issue the liquid biopsy is nonissue: a review. Oncol Ther. 2021;9:89–110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remon J, Pignataro D, Novello S, Passiglia F. Current treatment and future challenges in ROS1- and ALK-rearranged advanced non-small cell lung cancer. Cancer Treat Rev. 2021;95:102178.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Liu H, Shao D, Liu Z, Wang J, Deng Q, et al. Development and clinical validation of a circulating tumor DNA test for the identification of clinically actionable mutations in nonsmall cell lung cancer. Genes Chromosom Cancer. 2018;57(4):211–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Supplee JG, Milan MSD, Lim LP, Potts KT, Sholl LM, Oxnard GR, et al. Sensitivity of next-generation sequencing assays detecting oncogenic fusions in plasma cell-free DNA. Lung Cancer. 2019;134:96–9.

    Article 
    PubMed 

    Google Scholar
     

  • Horn L, Whisenant JG, Wakelee H, Reckamp KL, Qiao H, Leal TA, et al. Monitoring therapeutic response and resistance: analysis of circulating tumor DNA in patients with ALK+ lung cancer. J Thorac Oncol. 2019;14(11):1901–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christopoulos P, Dietz S, Angeles AK, Rheinheimer S, Kazdal D, Volckmar AL, et al. Earlier extracranial progression and shorter survival in ALK-rearranged lung cancer with positive liquid rebiopsies. Transl Lung Cancer Res. 2021;10(5):2118–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mezquita L, Swalduz A, Jovelet C, Ortiz-Cuaran S, Howarth K, Planchard D, et al. Clinical Relevance of an amplicon-based liquid biopsy for detecting ALK and ROS1 fusion and resistance mutations in patients with non-small-cell lung cancer. JCO Precis Oncol. 2020;4:272–82.

    Article 

    Google Scholar
     

  • Kunimasa K, Kato K, Imamura F, Kukita Y. Quantitative detection of ALK fusion breakpoints in plasma cell-free DNA from patients with non-small cell lung cancer using PCR-based target sequencing with a tiling primer set and two-step mapping/alignment. PLoS ONE. 2019;14(9):e0222233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui S, Zhang W, Xiong L, Pan F, Niu Y, Chu T, et al. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget. 2017;8(2):2771–80.

    Article 
    PubMed 

    Google Scholar
     

  • Leighl NB, Page RD, Raymond VM, Daniel DB, Divers SG, Reckamp KL, et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(15):4691–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Tian PW, Wang WY, Wang K, Zhang Z, Chen BJ, et al. Noninvasive genotyping and monitoring of anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer by capture-based next-generation sequencing. Oncotarget. 2016;7(40):65208–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon M, Ku BM, Olsen S, Park S, Lefterova M, Odegaard J, et al. Longitudinal monitoring by next-generation sequencing of plasma cell-free DNA in ALK rearranged NSCLC patients treated with ALK tyrosine kinase inhibitors. Cancer Med. 2022;11(15):2944–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma S, Moore MW, Ringler R, Ghosal A, Horvath K, Naef T, et al. Analytical performance evaluation of a commercial next generation sequencing liquid biopsy platform using plasma ctDNA, reference standards, and synthetic serial dilution samples derived from normal plasma. BMC Cancer. 2020;20(1):945.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman AM, Bratman SV, Stehr H, Lee LJ, Liu CL, Diehn M, et al. FACTERA: a practical method for the discovery of genomic rearrangements at breakpoint resolution. Bioinformatics. 2014;30(23):3390–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam VK, Zhang J, Wu CC, Tran HT, Li L, Diao L, et al. Genotype-specific differences in circulating tumor DNA levels in advanced NSCLC. J Thorac Oncol. 2021;16(4):601–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winther-Larsen A, Demuth C, Fledelius J, Madsen AT, Hjorthaug K, Meldgaard P, et al. Correlation between circulating mutant DNA and metabolic tumour burden in advanced non-small cell lung cancer patients. Br J Cancer. 2017;117(5):704–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Zhou F, Qiao M, Li X, Zhao C, Cheng L, et al. The role of circulating tumor DNA in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol. 2021;11:671874.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madsen AT, Winther-Larsen A, McCulloch T, Meldgaard P, Sorensen BS. Genomic profiling of circulating tumor DNA predicts outcome and demonstrates tumor evolution in ALK-positive non-small cell lung cancer patients. Cancers (Basel). 2020;12(4):947.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clement MS, Ebert EBF, Meldgaard P, Sorensen BS. Co-occurring MET amplification predicts inferior clinical response to first line erlotinib in advanced stage EGFR-mutated NSCLC patients. Clin Lung Cancer. 2021;22:e870–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Wang Y, Zhang J, Hu Q, Zhi F, Zhang S, et al. Significance of the TMPRSS2:ERG gene fusion in prostate cancer. Mol Med Rep. 2017;16(4):5450–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebert EBF, McCulloch T, Hansen KH, Linnet H, Sorensen B, Meldgaard P. Clearing of circulating tumour DNA predicts clinical response to first line tyrosine kinase inhibitors in advanced epidermal growth factor receptor mutated non-small cell lung cancer. Lung Cancer. 2020;141:37–43.

    Article 
    PubMed 

    Google Scholar
     

  • Boysen Fynboe Ebert E, McCulloch T, Holmskov-Hansen K, Linnet H, Sorensen B, Meldgaard P. Clearing of circulating tumour DNA predicts clinical response to osimertinib in EGFR mutated lung cancer patients. Lung Cancer. 2020;143:67–72.

    Article 
    PubMed 

    Google Scholar
     

  • Meldgaard P. Monitoring alectinib treatment by detection of ALK translocations in serial blood samples from non-small cell lung cancer patients (MonAlec), NCT04708639 clinicaltrials.gov2021 [Circulating tumor DNA can be used to monitor the treatment effect and identify developing resistance mutations during ALK directed TKI treatment.]. clinicaltrials.gov/ct2/show/NCT04708639

  • Read more here: Source link