Mycorrhizas drive the evolution of plant adaptation to drought

  • Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A. & Steemans, P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). N. Phytol. 188, 365–369 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Oliver, M. J. et al. Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annu Rev. Plant Biol. 71, 435–460 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, A. K. & Singh, V. P. A review of drought concepts. J. Hydrol. 391, 202–216 (2010).

    Article 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).

    Article 

    Google Scholar
     

  • Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Augé, R. M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3–42 (2001).

    Article 

    Google Scholar
     

  • Lehto, T. & Zwiazek, J. J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Clifford, M. J. & Booth, R. K. Late-Holocene drought and fire drove a widespread change in forest community composition in eastern North America. Holocene 25, 1102–1110 (2015).

    Article 

    Google Scholar
     

  • Schmieder, J. et al. Holocene variability in hydrology, vegetation, fire, and eolian activity in the Nebraska Sand Hills, USA. Holocene 23, 515–527 (2013).

    Article 

    Google Scholar
     

  • Martínez-Vilalta, J. & Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob. Planet Change 144, 94–108 (2016).

    Article 

    Google Scholar
     

  • Spinoni, J. et al. Future global meteorological drought hot spots: a study based on CORDEX data. J. Clim. 33, 3635–3661 (2020).

    Article 

    Google Scholar
     

  • Zittis, G., Hadjinicolaou, P., Klangidou, M., Proestos, Y. & Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Change 19, 2621–2635 (2019).

    Article 

    Google Scholar
     

  • Ploughe, L. W. et al. Community response to extreme drought (CRED): a framework for drought-induced shifts in plant–plant interactions. N. Phytol. 222, 52–69 (2019).

    Article 

    Google Scholar
     

  • Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 4663 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).

    Article 

    Google Scholar
     

  • Bowles, A. M. C., Paps, J. & Bechtold, U. Evolutionary origins of drought tolerance in spermatophytes. Front. Plant Sci. doi.org/10.3389/fpls.2021.655924 (2021).

  • Mu, D., Du, N. & Zwiazek, J. J. Inoculation with ericoid mycorrhizal associations alleviates drought stress in lowland and upland velvetleaf blueberry (Vaccinium myrtilloides) seedlings. Plants 10, 2786 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Püschel, D., Bitterlich, M., Rydlová, J. & Jansa, J. Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol. Biochem. 157, 108243 (2021).

    Article 

    Google Scholar
     

  • Sebastiana, M. et al. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza 28, 247–258 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kilpeläinen, J., Aphalo, P. J. & Lehto, T. Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in Populus angustifolia seedlings more than a mild drought. Soil Biol. Biochem. 146, 107798 (2020).

    Article 

    Google Scholar
     

  • Cosme, M., Fernández, I., Van der Heijden, M. G. A. & Pieterse, C. M. J. Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci. 23, 577–587 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambers, H. et al. How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424, 11–33 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bueno, C. G., Gerz, M., Zobel, M. & Moora, M. Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29, 1–11 (2018).

    Article 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).

    Article 

    Google Scholar
     

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 

    Google Scholar
     

  • GBIF.org. GBIF occurrence download. doi.org/10.15468/dl.5mab9f (23 December 2021).

  • Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. E. & Smith, F. A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talbot, J. M., Allison, S. D. & Treseder, K. K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22, 955–963 (2008).

    Article 

    Google Scholar
     

  • McGuire, K. L., Zak, D. R., Edwards, I. P., Blackwood, C. B. & Upchurch, R. Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 164, 785–795 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).

    Article 

    Google Scholar
     

  • Gardner, J. D. & Organ, C. L. Evolutionary sample size and consilience in phylogenetic comparative analysis. Syst. Biol. 70, 1061–1075 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Boyko, J. D. & Beaulieu, J. M. Reducing the biases in false correlations between discrete characters. Syst. Biol. doi.org/10.1093/sysbio/syac066 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valverde-Barrantes, O. J., Maherali, H., Baraloto, C. & Blackwood, C. B. Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. N. Phytol. 228, 541–553 (2020).

    Article 

    Google Scholar
     

  • Vilonen, L., Ross, M. & Smith, M. D. What happens after drought ends: synthesizing terms and definitions. N. Phytol. doi.org/10.1111/nph.18137 (2022).

    Article 

    Google Scholar
     

  • Radhakrishnan, G. V. et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants 6, 280–289 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bravo, A., York, T., Pumplin, N., Mueller, L. A. & Harrison, M. J. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2, 15208 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosme, M., Fernández, I., Declerck, S., van der Heijden, M. G. A. & Pieterse, C. M. J. A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana. Plant Mol. Biol. 106, 319–334 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández, I. et al. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. N. Phytol. 223, 867–881 (2019).

    Article 

    Google Scholar
     

  • Venice, F. et al. Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. Plant J. 108, 1547–1564 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruijning, M., Henry, L. P., Forsberg, S. K. G., Metcalf, C. J. E. & Ayroles, J. F. Natural selection for imprecise vertical transmission in host–microbiota systems. Nat. Ecol. Evol. 6, 77–87 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  • Redecker, D., Kodner, R. & Graham, L. E. Glomalean fungi from the Ordovician. Science 289, 1920–1921 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remy, W., Taylor, T. N., Hass, H. & Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl Acad. Sci. USA 91, 11841–11843 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi. Commun. Biol. 5, 398 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 

    Google Scholar
     

  • Walker, J. F. et al. Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. N. Phytol. 191, 515–527 (2011).

    Article 

    Google Scholar
     

  • Davison, J. et al. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. N. Phytol. 226, 1117–1128 (2020).

    Article 

    Google Scholar
     

  • Ekblad, A. et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366, 1–27 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Niinemets, Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547 (2006).

    Article 

    Google Scholar
     

  • Green, W. USDA PLANTS Compilation, version 1, 09-02-02. bricol.net/downloads/data/PLANTSdatabase (2009).

  • Wirth, C. & Lichstein, J. W. The imprint of species turnover on old-growth forest carbon balances – insights from a trait-based model of forest dynamics. In Old-Growth Forests. Ecological Studies (eds Wirth, C., Gleixner, G. & Heimann, M.) (Springer, 2009).

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bueno, C. G. et al. Towards a consistent benchmark for plant mycorrhizal association databases: a reply to FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 231, 913–916 (2021).

    Article 

    Google Scholar
     

  • Bueno, C. G. et al. Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. N. Phytol. 224, 1415–1418 (2019).

    Article 

    Google Scholar
     

  • Brundrett, M. C. Auditing data resolves systemic errors in databases and confirms mycorrhizal trait consistency for most genera and families of flowering plants. Mycorrhiza 31, 671–683 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. N. Phytol. 221, 18–24 (2018).

    Article 

    Google Scholar
     

  • Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. N. Phytol. 225, 1835–1851 (2020).

    Article 

    Google Scholar
     

  • Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. N. Phytol. 222, 543–555 (2018).

    Article 

    Google Scholar
     

  • Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).

    Article 

    Google Scholar
     

  • Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner, G. D. A., Cornwell, W. K., Sprent, J. I., Kattge, J. & Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5, 4087 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joly, S. & Schoen, D. J. Repeated evolution of a reproductive polyphenism in plants is strongly associated with bilateral flower symmetry. Curr. Biol. 31, 1515–1520.e1513 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boettiger, C., Coop, G. & Ralph, P. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66, 2240–2251 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link